
PROJECT REPORT ON
RESOLUTION PROOF SYSTEM

ANIL SHUKLA

THEORETICAL COMPUTER SCIENCE

THE INSTITUTE OF MATHEMATICAL SCIENCES

JUNE 2013

Dedicated To My Teachers And Parents

2

Acknowledgements

I would like to thank Prof. Meena Mahajan for her guidance and patience in this
journey of preparing and writing the report. Without her the report would not have
existed. The best part about this journey is the freedom that she has given to me.

Also, while preparing this report, the presentation sessions with her and Ra-
manathan S. Thinniyam has helped me alot in developing my understanding about
the subject.

Finally, I would like to thank my friends Anish Mallick and Raja S. for useful
discussions.

Anil Shukla

Theoretical Computer Science

The Institute of Mathematical Sciences

3

ABSTRACT

A propositional proof system (pps) is a proof system for TAUT . More formally,
a pps is a polynomial time computable function f whose range is the set of all
propositional tautologies.

In this report we investigate a particular pps, “resolution proof system”. We
review the first exponential size lower bound for resolution, proved by Haken in
1985 [16].

We review relationships among the three complexity measures of resolution: size,
width and space. In particular, the report includes size-width relation for general
and tree-like resolutions (by Ben-sasson and Wigderson [9]), size-space relation for
tree-like resolutions (by Esteban and Torán [12]), and width-space relation for gen-
eral resolutions (by Atserias and Dalmau [5]).

In literature, there are combinatorial characterizations of tree-like resolution size
(by Beyersdorff, Galesi and Lauria [10]), resolution width (by Atserias and Dalmau
[5]) and tree-like resolution space (by Impagliazzo and Pudlák [20]). We review the
results from [5] (resolution width) and [20] (tree-like resolution space).

At last we show tradeoffs between various complexity measures (i.e, size, width
and space) for tree-like resolutions (by Ben-Sasson [7]).

4

Contents

1 Introduction 1
1.1 Proof Systems . 1
1.2 Organization of the Report . 3

2 Resolution 4
2.1 Definitions . 4
2.2 Completeness and Soundness of Resolution 5
2.3 Tree-like Resolution . 6
2.4 Resolution Proofs with Weakening Rule 6
2.5 Complexity Measure . 8

3 Lower Bounds for Resolution 9
3.1 The Pigeonhole Principle . 9

3.1.1 Encoding the Pigeonhole Principle as an Unsatisfiable CNF
Formula . 9

3.1.2 Inductive Proof of the Pigeonhole Principle 10
3.1.3 Lower Bound for General Resolution: PHP n

n−1 10
3.2 Width of a Resolution Proof . 14

3.2.1 Width and Tree-like Size . 15
3.2.2 Width and Size . 18

3.3 Tree-like vs General Resolution Proofs 23

4 Space and Width of Resolution 34
4.1 Definitions . 34
4.2 Clause Space and Tree-like Size . 39
4.3 Combinatorial Characterization of Resolution Width 41
4.4 Width vs Space . 44
4.5 Combinatorial Characterization of Tree-like Resolution Clause Space 47

5 Size-Width Tradeoffs for Tree-like Resolution 52

6 Conclusion 62

A Complexity Classes and Useful Notations Used in the Report 63

Bibliography 66

5

Chapter 1

Introduction

A language L ⊆ {0, 1}∗ is in complexity class P iff the function fL : {0, 1}∗ → {0, 1}
is computable in polynomial time, where fL(x) = 1 ⇐⇒ x ∈ L. A language L is
in complexity class NP iff all strings in L have a short, polynomial time checkable
proof of membership in L 1. Intuitively the class P contains decision problems that
can be efficiently solved and class NP contains decision problems whose solutions
can be efficiently verified. It is still open whether or not the two classes are the
same. Cook in the 1970’s suggested that proof complexity bounds would give us
answer for this problem. In particular he along with Reckhow proved in [2] that if
one can find a polynomial-size family of tautologies that does not have polynomial
size proofs then this will separate NP from coNP 1(i.e, this will show that NP
is not closed under complement) and thus separate P from NP (as P is closed
under complement). Since finding such a family of tautologies is quite hard, the
theory of proof complexity breaks this problem into smaller problems of proving
such lower bounds for specific proof systems. Solving these smaller problems has
useful implications for automated theorem proving as well.

1.1 Proof Systems

Consider the language SAT of all satisfiable boolean formulas. Trivially SAT is in
NP as there exists always a short proof (satisfying truth assignment) for formulas
in SAT . However how short proofs for formulas not in SAT could be is not clear.
This requires the definition of a proof system.

Definition 1.1. [2] A proof system for a non empty language L ⊆ {0, 1}∗ is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that Rng(f) = L.
For string x ∈ L, we say a string w ∈ {0, 1}∗ is f -proof of x if f(w) = x. We say a
proof system for L is polynomially bounded if there exists a polynomial p(x) ∈ N[x]
such that each x ∈ L has an f -proof ‘w’ of size |w| ≤ p(|x|).

With this terminology it is clear that NP is precisely the set of languages that
have polynomially bounded proof systems. Define the language TAUT to be the
set of all propositional logic tautologies (i.e formula that evaluates to True on every
assignment).

1For the formal definitions of complexity classes P , NP and coNP see Appendix A.

1

Definition 1.2. [2] A proof system for the language TAUT is called a proposi-
tional proof system (pps).

Definition 1.3 (Completeness and Soundness of a pps). We say that a pps ‘Q’ is
complete if for each formula τ ∈ TAUT there exists a proof for τ in Q and is sound
if the existence of a proof for τ in Q implies that τ ∈ TAUT .

Since a formula is unsatisfiable (i.e, evaluates to False on every assignment)
iff its negation is a tautology, we can give the following equivalent definition of
propositional proof systems. Define the language UNSAT to be the set of all
unsatisfiable propositional logic formulas.

Definition 1.4. [2] A proof system for the language UNSAT is called proposi-
tional proof system (pps).

The following theorem is proved by Cook and Reckhow in [2]. We are presenting
the proof following the lecture notes by Jan Krajiček [18].

Theorem 1.5. [2] There exists a polynomially bounded pps iff NP = coNP

Proof. Suppose polynomially bounded pps exist. Then there is a polynomially com-
putable function f : {0, 1}∗ → {0, 1}∗ such that Rng(f) = TAUT and there exists
a polynomial p(x) such that,

∀τ ∈ TAUT, ∃w(|w| ≤ p(|τ |)); f(w) = τ

which is an NP definition of TAUT . Hence NP = coNP as TAUT is coNP -
complete set.
On the other hand, if NP = coNP , then TAUT is in NP and hence we have an NP
definition for TAUT , which is, ∀τ ∈ TAUT, ∃u(|u| ≤ q(|τ |));M(u, τ) = 1, where
M is polynomially bounded TM (may be view as polynomially time function) and
q is some polynomial. Using this fact one can define a polynomially bounded pps as
follows:

f(w) =

{
τ if w = (u, τ)and |u| ≤ q(|τ |) ∧M(u, τ) = 1
1 otherwise

Here the domain of f is {0, 1}∗. Interpret w as pair (u, τ), and if u is a proof of τ
then f maps w to τ else f maps it to 1 which is trivially in TAUT . �

Some examples of pps are 1) Truth Tables 2) Resolution 3) Davis Putnam
(DLL) Procedure 4) Frege Proofs etc.
Truth table pps is just a naive way of proving that a given formula τ is in TAUT .
In this system one evaluates τ on every possible assignments and produce a proof
in terms of completely filled truth table. Checking correctness of the truth table
(proof) is easy with respect to the size of the truth table, however the proof size
itself is exponential which makes this system practically useless. That is, a truth
table pps is not polynomially bounded.

2

1.2 Organization of the Report

The goal of this report is to understand resolution proof systems. The report is
organized as follows:

• In Chapter 2, we formally define the resolution propositional proof system. We
show the completeness and soundness of resolution proof system. We introduce
tree-like resolution pps and show that it is complete and sound. We introduce
the first complexity measure (size) for resolution and tree-like resolution pps.

• In Chapter 3, we show an exponential size lower bound for resolution. In
particular, we show that proving pigeonhole principle is hard in resolution
proof system. This result was first proved by Haken in 1985 [16]. We introduce
the second complexity measure (width) for resolution and tree-like resolution
proof systems, and show width-size relationship in resolution. The relation
between width and size in resolution was proved by Ben-Sasson and Wigderson
in 1999 [9]. At last we show that there exist formulas which have polynomial
size resolution proofs but require exponential size in tree-like resolution sytem.
This result was proved by Bonet and Galesi in 1999 [11].

• In Chapter 4, we introduce the third complexity measure (space) of resolution
and tree-like resolution proof system and show its connection to both size and
width. In particular, we show size-space relationship in tree-like resolution
proof system. This result was proved by Esteban and Torán in 2001 [12].
We also show space-width relationship in resolution, proved by Atserias and
Dalmau in 2003 [5].

Several game-theoretic methods have been developed to understand the com-
plexity of resolution proof system. We show a combinatorial characterization
of resolution width, defined by Atserias and Dalmau [5]. We also show a com-
binatorial characterization of tree-like resolution space, defined by Impagliazzo
and Pudlák [20].

• In Chapter 5, we show tradeoffs between various complexity measures (i.e, size,
width and space) in resolution proof system. In particular, we show for tree-
like resolution, there are formulas in which optimizing two of the measures
(width-space or width-size) simultaneously is not possible. This result was
proved by Ben-Sasson [7].

• We conclude the report in Chapter 6.

• Appendix contains all the useful notations used in the report.

3

Chapter 2

Resolution

Resolution propositional proof system (pps) is the simplest pps for which it is not
easy to prove a lower bound. This system was first introduced by Blake in 1937 [1]
but Davis along with Putnam in 1960 [19] and Robinson in 1965 [3] were the first
to use it in automated theorem proving.

2.1 Definitions

We will consider formulas over a set of propositional variables V . A literal is either
a variable x ∈ V or its negation ¬x. A term is a conjunction l1 ∧ · · · ∧ lk of literals
(WLOG, distinct literals) and a formula F in disjunctive normal form (DNF) is a
disjunction (∨) of terms. A clause C is a disjunction of literals (WLOG, distinct
literals) l1 ∨ · · · ∨ lk and a formula F in conjunctive normal form (CNF) is a con-
junction (∧) of clauses Ci’s. For convenience the clause C is written simply as a set
of literals {l1, . . . , lk} and any CNF formula as a set of clauses.

Resolution is a proof system for proving that boolean formulas in a DNF form
are tautologies. We know that transforming a boolean formula into an equivalent
one in the DNF form may increase its size exponentially. However, we do not
need an equivalent formula, we only need that the original formula is a tautology
iff the constructed DNF formula is too. One way to achieve this is as follows:
given a general formula φ, transform ¬φ into a CNF formula ¬φC using polynomial
reduction which preserves satisfiability. The complement of the CNF formula ¬φC
is the required DNF formula, since φ ∈ TAUT ⇐⇒ ¬φ ∈ UNSAT ⇐⇒ ¬φC ∈
UNSAT ⇐⇒ ¬(¬φC) ∈ TAUT . Hence we can assume that the given formula is
in DNF form.

In order to prove that the given DNF formula A is in TAUT , resolution solves the
equivalent complement problem of proving that the CNF formula ¬A is in UNSAT .
Thus resolution is a refutation proof system in CNF formulas. The only inference
rule in this proof system is the resolution rule:

C ∨ x D ∨ ¬x
C ∨D

The variable x is called the resolved variable and we say that x has been resolved
from the hypothesis clauses C ∨ x and D ∨ ¬x to get the resolvent (conclusion)
clause C ∨ D. We say a clause is satisfied by an assignment if it makes true at

4

least one literal in the clause. We will denote the empty clause by 2. The empty
clause can not be satisfied by any assignment. It is clear that if both the clauses in
the hypothesis of resolution rule are satisfied by an assignment then the assignment
satisfies the conclusion too. Hence the resolution rule is sound.

Let F = T1 ∨ · · · ∨ Tk be a DNF formula in TAUT , where Ti = li1 ∧ · · · ∧ lini
and ni is the number of literals in term Ti for each i ∈ I = [1..k]. Define clauses
Ci = {¬lij|1 ≤ j ≤ ni} for each i ∈ I. Clearly the CNF formula {C1, . . . , Ck} is the
complement of F and is in UNSAT iff F is in TAUT . A resolution proof of F is a
sequence of clauses D1, . . . , Dt such that:

1. Each Dq, 1 ≤ q ≤ t is either one of initial clauses Ci, i ∈ I, or is derived from
some clauses Dm, Dn with m,n < q using the resolution rule.

2. The last clause (i.e, Dt) is the empty clause (2).

The existence of such a proof certifies that the clauses Ci’s can not be simulta-
neously satisfied. Hence often called as a refutation of {C1, . . . , Ck}.

In any resolution refutation π = D1, . . . , Dt, of a DNF formula F ∈ TAUT , if
we store pointers from each Dq to Dm, Dn such that m,n < q and Dq is a conclusion
of a resolution rule with hypothesis Dm, Dn, then we actually get a directed acyclic
graph Gπ. In Gπ, the vertices are the clauses and the edges are from the resolvent
(conclusion) of an inference to the two hypothesis (the orientation may be defined
in the reverse order, i.e, from the hypothesis to the conclusion). We call Gπ as a
proof graph of F . The resolution proof π of F is a sequence of vertices of Gπ in a
topological order.

If the last clause Dt = A 6= 2, then we say that π is a derivation of clause A from
a CNF formula ¬F . It shows that every assignment satisfying ¬F also satisfies A.

2.2 Completeness and Soundness of Resolution

The next theorem states that resolution proof system is sound and complete. We
are presenting the proof from the lecture notes by Jan Krajiček [18].

Theorem 2.1. A DNF formula has a proof in resolution iff it is a tautology.

Proof.
Soundness Let F with k terms be a DNF formula that has a proof in resolution.
We will show that F is a tautology by showing that ¬F is unsatisfiable. Let Ci’s
be the clauses obtained as above. Any truth assignment satisfying all Ci’s, by the
soundness of resolution rule, would have to satisfy all the clauses in any resolution
refutation of Ci’s, in particular, the end (empty) clause as well. But that is not
possible as there are no literals in 2.

Completeness Let F a DNF formula with k terms is a tautology. Hence ¬F , in
particular, the set C = {C1, . . . , Ck} is unsatisfiable. Let x1, . . . , xn,¬x1, . . . ,¬xn be
the literals appearing in C. We will prove by induction on n that for any such C
there is a resolution refutation of C.

When n = 1, C must contain clauses (x1) and (¬x1) and their resolvent is the
empty set. Assume n > 1, and partition set C of clauses into four disjoint subsets:

5

C00, C01, C10, C11, of those clauses which contain no xn and no ¬xn, no xn but do
contain ¬xn, do contain xn but not ¬xn and contains both xn, ¬xn respectively.
Observe that the set C is unsatisfiable even without the fourth subset C11 of clauses,
since every assignment satisfies all the clauses in C11. Thus fourth subset is redun-
dant for unsatisfiability. Now using the first three disjoint subsets and the resolution
rule we will construct a new set C ′ of clauses such that it does not contain both xn
and ¬xn and is also unsatifiable. Thereafter, by invoking induction hypothesis we
are through.

Construct the new set of clauses C ′ as follows:

1. Include set C00 in C ′ (i.e, include all the clause from the set C00)

2. Include in C ′ all clauses C1∨C2 that are obtained by the resolution rule applied
to pairs of clauses C1 ∨ ¬xn from C01 and to C2 ∨ xn from C10.

Note that the clauses from subset C00 and the new clauses introduced in the 2nd step
of the construction contains neither xn nor ¬xn. Moreover, the new set of clauses C ′
is also unsatisfiable: if not, then there is an assignment α′ : {x1, . . . , xn−1} → {0, 1}
which satisfies all the clauses in C ′. Clearly α′ satisfies either I

)
all the clauses C1

such that C1 ∨ ¬xn ∈ C01 or II
)

all clauses C2 such that C2 ∨ xn ∈ C10 (otherwise
we could find some C1 ∨ C2 ∈ C ′ not satisfied by α′). Using this fact one can
easily extend α′ to a truth assignment α satisfying C, which is a contradiction. The
extension is simple, for the case I assign value 1 to xn and for case II assign value 0
to xn. �

2.3 Tree-like Resolution

Let F be an unsatisfiable CNF formula. A resolution proof π = (D1, . . . , Dt) of F is
tree-like iff each Di is used at most once as a hypothesis of an inference in the proof.
If one draws the proof graph of π, a directed graph with vertices being the clauses
and the edges going from the conclusion of an inference to the two hypothesis, then
the condition tree-like precisely says that the graph is a tree (a proof-tree).

The proof system allowing exactly tree-like resolution proofs is called tree like
resolution proof system. Several other restrictions of the resolution proof system
have appeared in the literature [21]. Hereby, the term ‘general resolution proof
system’ will be used to denote resolution systems without any additional restriction.

It can be easily seen that tree-like resolution proof system is also sound and
complete (since from general resolution refutation one can get tree-like refutation
just by rederiving each time the clauses that are needed more than once in the
refutation from the initial clauses).

2.4 Resolution Proofs with Weakening Rule

In resolution proof system some times we also include one more inference rule, the
weakening rule:

C

C ∨D

6

where C and D are arbitrary clauses. To be precise, let F = T1 ∨ · · · ∨Tk be a DNF
formula in TAUT and the CNF formula {C1, . . . , Ck} be the complement of F as
before. Clearly the CNF formula is unsatisfiable iff F is a tautology. A resolution
proof with weakening rule of F is a sequence of clauses D1, . . . , Dt such that the
last clause is the empty clause (2) and each clause Dq is either some initial clause
Ci, i ∈ [k] or is derived from the previous clauses using one of the following inference
rules:

1. The resolution rule:Dm Dn
Dq

, where m,n < q, Dm, Dn are clauses and x is a

variable such that x ∈ Dm and ¬x ∈ Dn and Dq = Dm ∪Dn − {x,¬x}.

2. The weakening rule: Dm
Dq

, where m < q, Dm is one of the previous clause and

Dq = Dm ∨ C for an an arbitrary clause C.

Remark 2.2. A resolution proof system with weakening rule is sound and complete:
the weakening rule C

C∨D is sound since any assignment which satisfies C must also
satisy C ∨ D. On the other hand from Theorem 2.1 we know that resolution proof
system with out weakening rule is complete which implies that resolution proof system
with weakening rule is also complete.

For any resolution proof π = {D1, . . . , Dt} of F ∈ TAUT with weakening rule
we have a directed acyclic graph Gπ where vertices corresponds to clauses and edges
are from the conclusion to the hypothesis of an inference rule. Note that in Gπ

the indegree of each vertex can be either 0, 1 or 2. Analogous to the definition of
tree-like resolution proof we have tree-like resolution proof with weakening rule.

The following lemma shows how to remove weakening rule from a tree-like reso-
lution proof with weakening rule.

Lemma 2.3. Let F be an unsatisfiable CNF formula and let π be a tree-like refu-
tation of F with weakening rule. Then we can convert π to π′ such that π′ is a
tree-like resolution refutation of F without weakening rule.

Proof. Let Tπ be the corresponding tree graph for π. The root of Tπ is the empty
clause. Assume the edges of Tπ are oriented towards the root. If none of the clauses
in π uses weakening rule then π is our π′ and we are done. Otherwise there is a
clause in π which uses weakening rule. Consider a highest clause in Tπ which is
derived via weakening rule. Let this be the clause E = C ∨D with its unique child
C. Consider the unique path ρ from E to the root of T . As E is the highest clause
it is guarenteed that no clause in ρ is derived using weakening rule. Since the root of
T has no literals, there must be clauses in ρ where literals of C and D are chopped
off one by one using resolution rule. Call those clauses as C ′ and D′ respectively.
While chopping off literals from C and D new literals may also gets added. In ρ
these new literals also gets removed subsequently by some clauses, Call them C ′N
and D′N respectively.

Consider the tree T constructed from Tπ as follows: from the path Cρ in Tπ
remove the clause E along with all the clauses of type D′ and D′N . Concatenate
the remaining clauses of Cρ to get Cρ′. Each of the clauses D′ and D′N are derived
using resolution rules such that one of their hypothesis clauses are from ρ and the
other-one from outside ρ. Remove the outer clause as well along with its entire

7

subtree. Since these subtrees are used only to resolve the literals of D and the new
literals, these can be removed safely. Keep the remaining tree Tπ as it is to get T .
We claim that T is a valid tree-like refutation of F which uses one less weakening
rule: as we have removed the clause E, the weakening rule used to derived it from
C has been removed. Moreover now the literals in D are not there in ρ hence we
can remove safely all the clauses used to remove it (i.e, D′) and D′N .

By repeating this procedure in top down order we can construct a tree-like
refutation T ′ of F without using the weakening rule. �

In this report we always assume that resolution proofs uses only the resolution
rule to derive the empty clause, unless stated otherwise.

2.5 Complexity Measure

The most important complexity measure of a resolution proof is its minimal size,
measured in the number of clauses appearing in a proof. More formally, let F be
an unsatisfiable CNF formula. Let π ` F (resp. π `tl F) denote that π is a general
(resp. tree-like) resolution refutation of F . The size |π| of a refutation π in any
of the above two systems is defined as the number of clauses used in π. The size
complexity S(` F) (resp. ST (` F)) of deriving a CNF formula F in general reso-
lution (resp. in tree-like resolution) is defined as min

π`F
|π| (repectively min

π`tlF
|π|). It is

clear that for any unsatisfiable CNF F we have S(` F) ≤ ST (` F). The problem of
proving a size lower bound for general resolution is to come up with an unsatisfiable
CNF formula F such that S(` F) is at least superpolynomial or exponential. This
problem has recieved much attention over the past few decades and various size
lower bounds have been obtained for various families of formulas in CNF form. We
will go through some of these results in the next chapter. We end this chapter with
an upper bound on S(` F).

Simple analysis of Theorem 2.1 shows the following:

Lemma 2.4. Let F be an unsatisfiable CNF formula over n variables then there
exists a resolution refutation π of F such that depth of Gπ ≤ n.

Proof. Resolution refutation π constructed in Theorem 2.1 resolves at least one
variable in each step hence there are at most n levels in the proof graph Gπ. One
can easily convert Gπ into a tree T without increasing its depth. Hence there also
exists a tree-like refutation T of F such that depth of T is ≤ n. �

Lemma 2.5. For every unsatisfiable CNF formula F on n variables, S(` F) ≤ 2n+1.

Proof. There are n variables, so 2n literals, so 22n possible clauses. So the refutation
can not be larger than 22n; this is a trivial upper bound on S(` F).

However, the way we construct the refutation in the proof of Theorem 2.1, we
eliminate a variable at each step, getting a depth n graph. Even if we were to write
it as a tree, a binary tree of depth n has at most 1 + 2 + 22 + · · · + 2n = 2n+1 − 1
vertices. So the refutation is actually of size at most 2n+1. �

8

Chapter 3

Lower Bounds for Resolution

The first step in proving a lower bound for any proof system is often to find a
candidate hard example for that proof system. In case of general resolution proof
system the first superpolynomial (and, in fact, exponential) size lower bound has
been proved in 1985 by Haken [16]. The tautology he considered in his proof is
elementary yet basic to mathematics: the pigeonhole principle.

3.1 The Pigeonhole Principle

The pigeonhole principle says that if we put m pigeons into n holes, where m > n,
then at least one hole must contain more than one pigeon. Mathematically, it asserts
that if m > n then there is no one-to-one mapping from a set of size m to a set of
size n.

3.1.1 Encoding the Pigeonhole Principle as an Unsatisfiable
CNF Formula

This can be easily encoded as an unsatisfiable CNF formula PHPm
n over variables

Pi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, which is supposed to be assigned “True” if pigeon i is
put into hole j. PHPm

n contains the following clauses:

(1) (Pi,1 ∨ Pi,2 ∨ . . . , Pi,n), for 1 ≤ i ≤ m. This clause ensures that ith pigeon is
assigned to some hole.

(2) (¬Pi,j ∨ ¬Pk,j), for 1 ≤ i < k ≤ m, 1 ≤ j ≤ n. This clause ensures that the jth

hole does not get both the ith and the kth pigeon.

(3) (¬Pi,j ∨ ¬Pi,k), for 1 ≤ i ≤ m, 1 ≤ j < k ≤ n. This clause ensures that the ith

pigeon should not be assigned to both the jth and the kth hole.

Thus there are total m+n
(
m
2

)
+m

(
n
2

)
clauses (which is less than 3m2 when m > n).

The clauses collectively ensure that any satisfying assignment to theses variables
corresponds to a valid one-to-one function from m pigeons to n holes. Thus if m > n
then due to the pigeonhole principle the CNF formula PHPm

n is unsatisfiable.

9

3.1.2 Inductive Proof of the Pigeonhole Principle

Proof. In order to prove pigeonhole principle form pigeons and n holes wherem > n,
it is sufficient to prove it for any n pigeons and n − 1 holes. Because then we can
arbitrarily choose n + 1 pigeons from m pigeons and show the nonexistence of any
one-to-one function f : n+ 1→ n, which impies the nonexistence of any one-to-one
function for m pigeons to n holes as well.

We will prove this by induction on n. For the base case, it is trivial that there
is no one-to-one function from 2 pigeons to 1 hole. For the induction step, pick
any function f : {1, 2, . . . , n} → {1, 2, . . . , n − 1} and we will show that f is not
one-to-one function. For this, pick any hole y. If f has mapped more than one
pigeons in hole y, then we are through, i.e, f is not a one-to-one function. If f has
mapped exactly one pigeon say x to the hole y (i.e, for unique x : f(x) = y), then
we throw away the pigeon x and the hole y. Now we are left with only n−1 pigeons
and n− 2 holes and from induction hypothesis we are done. The final case is when
hole y is empty, that is, f has mapped none of the pigeons to hole y. In this case
we throw away the hole y. Now we are left with only n − 2 holes. By induction
hypothesis, we know that there is no one-to-one function from n − 1 pigeons and
n− 2 holes, which again implies that there can not be any one-to-one function from
n pigeons to n− 2 holes. �

3.1.3 Lower Bound for General Resolution: PHP n
n−1

We will show that general resolution requires exponential size to prove the pigeonhole
principle. This was the first exponential lower bound shown for general resolution.

Theorem 3.1. For any n ≥ 2, every resolution refutation of PHP n
n−1 has size at

least 2n/20. That is S(` PHP n
n−1) ≥ 2n/20.

The correctness of any resolution refutation can be tested by assigning values
to its variables. A correct refutation shows that no assignment can satisfy all the
initial set of clauses. To be precise, given a refutation π and an assignment α,
assign values to its variables based on α. Evaluate the vertices (clauses) of π based
on α to get a label 0 or 1. Call a path consiting of 0 label clauses from the root
(empty) clause to some leaf (initial) clause of π a 0-path. We know a refutation is
a derivation of an empty clause from the set of initial clauses using only resolution
rules, and since resolution rule is sound, if we assume that the initial clauses are
true then the empty clause must be true. As no assignment can satisfy the empty
clause, for every assignment there must be a 0-path from the empty clause to one
of the source vertex in the refutation. The 0-path shows that the given assignment
does not satisfy the corresponding initial clause.

Instead of producing a 0-path for all possible assignments consider refutations
that only produces a 0-path for certain subset of assignments, that is, which shows
that a certain subset of assignments can not satisfy all the initial clauses simultane-
ously. Of course for assignments outside this subset the refutation may or may not
produces a 0-path. Thus this is a relaxation in the notion of resolution refutation.
Hence we call such a refutation a relaxed refutation. Observe that any lower
bound on the size of relaxed refutation also apply for the general refutation.

10

The subset of assignments for which the relaxed refutation produces a 0-path
are said to be critical assignments.

Critical assignment for PHP n
n−1 An assignment is said to be critical if it corre-

sponds to a mapping that map n− 1 pigeons to n− 1 holes in a one-to-one manner
and leaves the nth pigeon unassigned. There are n! such assignments. If the index
of the only unassigned pigeon is k we call such a critical assignment a k-critical
assignment. We also call critical assignments as test assignments.

Any relaxed refutation derives contradiction only for critical assignments. This
relaxation allows us to make all clauses in the refutation monotone (i.e, with no
occurence of negated variables). For this we will perform the following transforma-
tion: For each clause C in the refutation, produce a monotonized clause M(C) by
replacing each negated variable ¬Pi,j by

∨
l 6=i
Pl,j. We call the resulting refutation as

monotonized resolution refutation (MRR).

Claim 3.2. M(C) is satisfied by exactly the same set of test assignments as the
original clause C.

Proof. First we will show that any critical assignment α which satisfies C must
also satisfy M(C): as the transformation does not change any positive literals, if α
satisfied C by setting some positive literal to 1 then we are done. Now suppose α
satisfied C by assigning ¬Pi,j = 1. Thus Pi,j = 0 which implies that ith pigeon is
not in jth hole. But α is critical assignment, therefore ∃k, such that kth pigeon is in
jth hole. Thereby Pk,j = 1. Since Pk,j is in M(C), M(C) is satisfied by α.

On the other hand, suppose a critical assignment α falsifies C. We will show
that α also falsifies M(C): again we only need to consider negative literals of C.
Suppose α assigns ¬Pi,j = 0. Thus Pi,j = 1 which implies ith pigeon is in the jth

hole. Since α is critical assignment, none of the other pigeons are assigned to hole
j by α, there by ∀k, k 6= i, Pk,j = 0. So M(C) is also falsified by α.

�

For any critical assignment α, a relaxed resolution refutation produces a 0-path
(i.e, path of unsatisfiable clauses from the empty clause to some source clause). And
due to claim 3.2, the corresponding monotonized resolution refutation also preserves
the 0-path from the empty clause to the source clause for α. Thus a monotonized
resolution refutation also shows via a 0-path that any critical assignment does not
satisfies all the initial clauses simultaneously. The next Lemma shows that mono-
tonized refutations must have a large clause.

Lemma 3.3. Every monotonized resolution refutation (MRR) π of PHP n
n−1 must

contains a clause with at least 2n2/9 variables.

Proof. For each clause in the monotonized refutation, let

witness(C) = {i : there is an i-critical assignment α falsifying C}

Define the complexity of a clause C, comp(C) to be |witness(C)|. Clearly
comp(C) ≤ 1 for C ∈ PHP n

n−1. This is because the initial clauses of type (2)
and (3) is satisfied by every critical assignment and the initial clauses of type (1) for

11

pigeon i is falsified by only i-critical assignments. Also comp(2) = n since empty
clause is falsified by any critical assignment. Let a clause C is derived from two
clauses A and B (i.e, A B

C
), then comp(C) ≤ comp(A)+ comp(B): since every criti-

cal assignment that falsifies C must falsify at least one of A and B. So witness(C) ⊆
witness(A) ∪ witness(B). Therefore comp(C) ≤ comp(A) + comp(B) (this shows
that comp is subadditive with respect to the resolution rule. Due to the above
mentioned properties of comp, for every MRR the following claim holds:

Claim 3.4. For every MRR π of PHP n
n−1, there exists a clause C ′ such that n/3 ≤

comp(C ′) ≤ 2n/3.

Proof. Consider the proof graph Gπ of MRR π (edges are from the conclusion to
the two hypothesis). The root of Gπ corresponds to the empty clause and leaves
corresponds to the source clauses of PHP n

n−1. One can find C ′ with the following
simple search algorithm in Gπ: starting with the root vertex of Gπ, go on descending
towards source vertices by following the children with larger comp values, until we
encouter for the first time a clause A with comp(A) < n/3. The parent of A is
C ′: as A is the first clause with smaller comp values, we have comp(C ′) ≥ n/3.
Also among the two children say A and B we have, comp(A) ≥ comp(B). Thus
comp(B) < n/3, and thereby comp(C ′) ≤ n/3 + n/3 = 2n/3.

�

It is sufficient to show that for any clause C, if comp(C) = p then C contains at
least p(n − p) distinct literals. Because then we have comp(C ′) ∈ [n/3, 2n/3] and
thereby C ′ must have at least n/3(n− n/3) = 2n2/9 literals.

Fix any i ∈ witness(C) and any i-critical assignment α which falsifies C. By
definition, in α only pigeon i is not mapped to any hole. Fix any j /∈ witness(C).
Construct a j-critical assignment α′ from α just by swapping i by j. That is, in α,
pigeon j is mapped to some hole say l, then in α′ map pigeon i to hole l and leave
only pigeon j unmapped. As j /∈ witness(C), the j-critical assignment α′ must
satisfy the clause C. Observe that the only difference between α and α′ is that the
value of Pi,l, Pj,l are 0, 1 respectively in α and 1, 0 in α′. And since C is falsified by
α but is satisfied by α′, it must be the case that the variable Pi,l must belongs to C.

Thus for the same i-critical assignment α and running over all n − p values of
j /∈ witness(C), we conclude that C contains at least n − p distinct variables of
the type Pi,l. As comp(C) = p, repeating the argument for every i ∈ comp(C), we
conclude that C contains at least p(n− p) distinct variables. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1.
We are given any relaxed refutation π of PHP n

n−1. Using above transformation
convert π into a monotonized resolution refutation π′. As seen before π′ correctly
produces 0-path for every critical assignments. Observe that the transformation
does not change the number of clauses in π. Thus |π| = |π′|. We need to show that
|π′| ≥ 2n/20. Let us call a clause in π′ large if it has at least n2/10 variables. Let L
be the number of large clauses in π′. We will show by contradiction that L ≥ 2n/20.
This will prove the desired result.

Suppose not. Then we have L < 2n/20. We define partial restrictions to variables
that greatly reduces the number of large clauses. Since totally PHP n

n−1 has n(n−1)

12

variables and large clauses has at least n2/10 variables. Thus there exists a variable
Pi,j which occurs in at least 1/10th of the large clauses.

(
To verify this consider a

matrix A whose rows corresponds to large clauses and columns to variables. Thus
A has L rows and n(n−1) columns. Define A[i][j] = 1 iff jth variable belongs to the
ith large clause. Clearly each row of A has at least n2/10 1’s. Thus total number of
1’s row-wise in A is at least (n2/10) · L. Let each column of A has at most M 1’s.
Then clearly we have n(n− 1) ·M ≥ (n2/10) · L. Hence

M ≥ n2 · L
10 · n(n− 1)

>
(1

10

)
· L, since n ≥ 2 we have

n

n− 1
> 1.

This verifies the claim
)
.

Define the following restriction: Pi,j = 1 and ∀j′ 6= j, Pi,j′ = 0 and ∀i′ 6= i, Pi′,j =
0. This restriction assigns pigeon i to hole j. It also ensures that pigeon i is not
assigned to any other hole and no pigeon i′ other than i is assigned to hole j. This
restriction removed pigeon i and hole j from the contention. Hence we are left with
only n − 1 pigeons and n − 2 holes. Also now we are left with only n − 1 distinct
j-critical assignments for j 6= i.

This restriction also sets all monotonized clauses in π′ containing Pi,j to true.
Remove such clauses from π′ along with all the variables Pi,j′ and Pi′,j from their
corresponding clauses to get π1. Clearly in π1 at most (9/10)L large clauses left. The
claim is that π1 is a monotonized resolution refutation for PHP n−1

n−2 (i.e, π1 correctly
produces a 0-path for all remaining critical assignments): after this restriction we
are left with only n−1 pigeons and n−2 holes. Now there is no i-critical assignments
as pigeon i is already assigned to hole j. In other words all the clauses corresponding
to pigeon i and hole j already gets satisfied by the restriction. And from π′ we have
only removed the clauses which becomes 1 after the restriction along with variables
which were mentioning about the ith pigeon and the jth hole to get π1. Thus π1

still preserves the 0-path from the empty clause to some source clause for each j-
critical assignment with j 6= i. Hence π1 correctly produces a 0-path for all critical
assignment for the formula PHP n−1

n−2 .
Similarly repeat the procedure t many times to get an MRR πt of PHP n−t

n−1−t with

at most
(

9
10

)t
L large clauses.We pick t such that

(
9
10

)t
L < 1. Simple calculation

gives us such a t: (9

10

)t
L < 1

L <
(10

9

)t
log2 L < t log2(10/9)

log2 L

log2(10/9)
< t

13

By assumption we have L < 2n/20. Thus we pick

t >
log2 2n/20

log2(10/9)
=

n

20 · log2(10/9)
>

log2 L

log2(10/9)

and repeat the procedure t many times to get an MRR πt of PHP n−t
n−1−t with no large

clauses. Therefore the largest clause in πt has strictly less than n2/10 variables. Also
from Lemma 3.3, πt must have a clause with at least 2(n−t)2/9 variables. Combining
the above two statements we have,

2(n− t)2

9
≤ number of variables in largest clause of πt <

n2

10
(3.1)

Thereby we have,

2(n− t)2

9
<
n2

10
(n− t)2

n2
<

9

20(
1− t

n

)2

<
45

100

− t
n
<

3
√

5

10
− 1

∴ t > n
(

1− 3
√

5

10

)
Thus from 3.1 we also have

t > n
(

1− 3
√

5

10

)
Now if we pick t = n(0.3290) then this will contradict Equation 3.1 and hence
Lemma 3.3. Therefore it must be the case that L ≥ 2n/20.

�

Remark 3.5. The above proof forces us to choose t > n
20·log2(10/9)

= n(0.32894)
(

in order to keep the number of variables in largest clause of πt <
n2

10

)
and t >

n
(

1 − 3
√

5
10

)
= n(0.32917)

(
in order to have at least one clause with ≥ 2(n−t)2

9

variables
)

. Thus we have a contradiction if we pick t = n(0.3290). This is because

t = n(0.3290) satisfies the first condition but not the second as n(0.32894) < t =
n(0.3290) < n(0.32917).

3.2 Width of a Resolution Proof

A second complexity measure of a resolution proof is the minimal width, measured as
the maximal number of literals of a clause in the proof. More formally, let us define
the width of a clause C to be the number of literals in C, denoted by width(C). The
width of a CNF formula F , denoted as w(F), is defined to be the width of a largest
clause in F , i.e, w(F) = max

C∈F
{width(C)}. The width w(π) of a refutation π, is

14

defined as the width of a largest clause appearing in π, i.e, w(π) = max
C∈π
{width(C)}.

The width w(` F) (resp. w(`tl F)) of deriving an unsatisfiable CNF formula F in
general (resp. tree-like) resolution is defined as min

π`F
{w(π)} (resp. min

π`tlF
{w(π)}).

This measure was first introduced by Galil in 1977 [14]. In 1999, Ben-sasson and
Wigderson, based on ideas of Clegg, Edmonds and Impagliazzo, relate size lower
bounds of resolution proof to width lower bounds [9]. The main point of their
results is that now, to prove size lower bounds, it is sufficient to prove width lower
bounds.

3.2.1 Width and Tree-like Size

In this section we give a relation between w(` F) and ST (` F) via Theorem 3.6.
The Theorem was proved in [9]. Here we are presenting the proof from the survey,
‘Proof Complexity’ by Paul Beame [6].

Theorem 3.6. [9] Let F be an unsatisfiable CNF formula and ST (` F) = S. Then
w(` F) ≤ (blog2 Sc + w(F)). In particular, any smallest size tree-like resolution
proof π of F can be converted to another tree-like resolution proof π′ of F , of width
at most (blog2 Sc+ w(F)).

Proof. For simplicity, let w = (blog2 Sc+w(F)). We will show this by induction on
the size of the smallest tree-like resolution proof π of F .

Base case When S = 1, we know that π has only one vertex, which has to
be a vertex for the empty clause. Thus consider π′ to be π itself and we have
w(π′) = 0 ≤ w = (blog2 1c+ w(F)).

Induction hypothesis Assume that for all sets F ′′ of clauses with a smallest
tree-like resolution refutation of size S ′′ < S, there is a tree-like resolution proof π′′

of F ′′ with w(π′′) ≤ blog2 S
′′c+ w(F ′′).

Induction step Now let π be the smallest size tree-like resolution proof of F with
|π| = S. Consider the proof graph, which is a tree T , of π. Let x be the last variable
resolved on to derive the empty clause 2, and T1, T2 be the two subtrees from the
root. As the number of vertices in T is S, sizes of both the subtrees on top can
not be strictly more than S/2 at the same time, therefore one of the two subtrees
at the top must has size at most S/2 and the other has size strictly smaller than
S. Without loss of generality, let these be the left (T1) and the right (T2) subtree,
respectively. Also assume that ¬x comes from T1 and x from T2. See Figure 1(a).

Let F |x=1 and F |x=0 be the CNF formulas obtained after assigning 1 and 0
respectively to variable x in F . Clearly in F |x=1 (resp. F |x=0) all the clauses
containing x (resp. ¬x) becomes 1 and ¬x (resp. x) has been dropped from all the
clauses containing it.

As T is the smallest size tree-like refutation, T1 is a tree-like derivation of ¬x
from F in a smallest possible size (≤ S/2). And due to Lemma 3.8 (see below) we
have a refutation (i.e, derivation of 2) of F |x=1 of size ≤ S/2. Call the corresponding
tree-graph as T ′1. By applying induction hypothesis on the refutation T ′1, we have a

15

tree-like refutation (T ′′1) of F |x=1 with width ≤ blog2 S/2c+ w(F |x=1) ≤ blog2 Sc+
w(F)− 1 = w − 1.

□

x x

T
1

<=S/2

T
2

<S

T

S

F

x

T
1

<=S/2

F

□

T
1
'

<=S/2

F|
x=1

□

T
1
''

w-1

w = log S + w(F)

F|
x=1

IH
Add x to
appropriate

source nodes

x

T
w
''

w

F

x

T
2

<S

□

T
2
'

<S

IH

F F|
x=0

□

T
2
''

w

w

T
w
''

w

(x x) (x x)

T
w
''

w

T'
of

width
w

Figure 1: (a) Smallest tree-like proof T of F. Smallest tree-like
derivation T

1
of x of size <= S/2. Simlilarly T

2
 is a smallest

derivation of x of size < S. (b) Using T
1
, Lemma 3.8 and

induction hypothesis construct a proof of F or derivation of x with
width at most w. (c) If (b) fails to construct the proof, use T

2
,

Lemma 3, induction hypothesis and T
w
'' to construct a proof T' of

width atmost w.

1(a)

1(b)

1(c)

Lemma 3.8

Lemma 3.8

Let F¬x ⊆ F be the set of all clauses containing ¬x. As T ′′1 uses the initial clauses
from F |x=1, there is a subset of initial clauses (F ′) of F¬x with ¬x being removed
used by T ′′1 . From the proof T ′′1 constructs a derivation (T ′′w) by adding back ¬x
in all the initial clauses F ′ and propogate them up by mimicking exactly the steps
taken in T ′′1 . As there are no resolution steps in T ′′1 which resolves on the variable
x, T ′′w is a valid derivation. Moreover the width of T ′′w increases by one. That is
w(T ′′w) = w(T ′′1) + 1 ≤ w. There can be two cases with T ′′w: either the empty clause
or ¬x is on the top. In the first case T ′′w is actually a refutation of F with w(T ′′w) ≤ w
and we are done. Otherwise we have a derivation of ¬x from F with w(T ′′w) ≤ w.
See Figure 1(b).

Repeat the above steps for the right subtree of T . As we have a smallest size
tree-like derivation (T2) of x from F of size < S, we have a tree-like refutation (T ′2)
of F |x=0 of size < S due to Lemma 3.8. Again by applying induction hypothesis to
T ′2 we have a refutation (T ′′2) of F |x=0 with width ≤ (blog2 Sc+ w(Fx=0)) ≤ w. Let
Fx ⊆ F be the subset of all the clauses of F containing x and let F ′′ be the subset of
Fx with x removed which are used as the initial clauses in T ′′2 . Now using T ′′2 and T ′′w
we will construct a tree-like refutation T ′ of F with w(T ′) ≤ w as follows: add x in
all the clauses of F ′′ and resolve them before the leaf level of T ′′2 by using the copy of
the tree-like derivation T ′′w of ¬x. See Figure 1(c). By doing this we again get back

16

F ′′, which we can used by T ′′2 to derive an empty clause. Since w(T ′′2), w(T ′′w) ≤ w it
implies that w(T ′) ≤ w.

�

Corollary 3.7. Any tree-like resolution proof of an unsatisfiable CNF formula F
requires size at least 2(w(`F)−w(F)), i.e, ST (` F) ≥ 2(w(`F)−w(F)).

Proof. Let ST (` F) = S. From theorem 3.6, we have a tree-like refutation π′ of F
with width w ≤ (blog2 Sc+ w(F)). Thus we have,

w(` F) ≤ blog2 Sc+ w(F)

≤ log2 S + w(F)

w(` F)− w(F) ≤ log2 S

Exponentiating both side we have the desired result,

ST (` F) = S ≥ 2(w(`F)−w(F)).

�

Now we give the proof of Lemma 3.8 which will complete the proof of Theorem
3.6.

Lemma 3.8. For an unsatisfiable CNF formula F , if we have a smallest size tree-
like derivation of ¬x from F of size S, then we have a refutation of F |x=1 of size
S.

Proof. Let π be the smallest size tree-like derivation of ¬x from F with |π| = S, and
T be the corresponding tree proof. If x has not appeared in any of the clauses in π,
then it is guarenteed that no resolution step is taken to resolve on the variable x.
Thereby if we remove the literal ¬x from all the clauses of T where it appears, then
clearly after this modification at the top of T , we have a unique empty clause due
to minimality. Moreover, the resulting tree T ′, with |T ′| = S is a tree-like refutation
of F |x=1. This is because by assumption the initial clauses in T ′ do not have any
clauses from F containg x and now all its initial clauses do not contain ¬x as well.
Also all the resolution steps in T ′ exactly correspond to the resolution steps in T
which are all known to be valid.

Thus it is sufficient to proof that variable x does not belongs to any of the
clauses of T . We will prove this by contradiction. By assuming that x belongs to
some clauses of T we will come up with a shorter derivation of ¬x from F which is
a contradiction.

Suppose not. Then x appears in some clauses of T . As x is not in the top clause
of T , it must get resolved using the resolution rule on the variable x. Consider a
highest clause in T where x gets resolved. Let that clause be E = (D ∨ C) and
P = D ∨ ¬x,Q = C ∨ x be its two children. Consider the unique path ρ from E to
the root of T . Observe that the root contains only ¬x, and in E, there are no x,¬x.
This means there are clauses in ρ where literals of D and C are chopped off one
by one. Call those clauses as D′, C ′ respectively. While chopping off literals from
D, new literals may gets added. In ρ these new literals also gets removed in some

17

clauses call them D′N . Similarly we have C ′N . Note that in the process of removing
literals from D and C for sure ¬x gets added and x does not get added.

Consider the tree T ′ constructed from T as follows: from the path Pρ in T
remove the clause E, along with all the clauses of the type C ′ and C ′N . Concatenate
all the remaining clauses of the path Pρ to get a path Pρ′. Keep the remaining
tree T as it is to get T ′. Clearly |T ′| < |T |. We claim that T ′ is a valid tree-like
derivation of ¬x: since P contains ¬x, ¬x remains in all the clauses in the path Pρ′

because E was the highest clause resolving on x and that has already been removed.
This shows that ¬x remains at the top. And T ′ is a valid derivation because after
removing E, literals in C are no longer present in the first place hence we can easily
remove all the clauses of the type C ′ and C ′N .

�

3.2.2 Width and Size

In last section we saw width-size relation for tree-like resolution proofs. In this
section we give a relation between w(` F) and S(` F) for general resolution proofs
via Theorem 3.9. The Theorem was proved in [9]. Here we are presenting the proof
from the survey, ‘Proof Complexity’ by Paul Beame [6].

Theorem 3.9. [9] Let F be an unsatisfiable CNF formula over n variables. Then
w(` F) ≤ w(F) +O(

√
n lnS(` F))

Proof. If S(` F) = 1. Then there is a resolution proof of size 1 with only the
empty clause. Hence its width is 0 ≤ w(F) + 0 and we are done. Thus as-
sume that S(` F) > 1. Let π be a resolution proof of F with weakening rule
of smallest size and define d = d

√
2n lnS(` F)e. If d ≥ 2n then we already have

w(` F) ≤ d < 2d+w(F)+1 (since any clause can have at most 2n distinct literals).

Else d < 2n, and define a =
(

1− d
2n

)−1

. Let us call a clause in π large if its width

is at least d and let π∗ be the set of large clauses in π.

Consider the following statement:

Stmt(m) : Given any F ′ an unsatisfiable CNF formula over m variables and π′ a
resolution proof of F ′ with weakening rule. Let Q be the number of large clauses in
π′. Then ∀b if Q < ab then w(` F ′) ≤ d+ w(F ′) + b.

We will prove ∀m ≤ n, Stmt(m) using induction on m. But before proving
this let us first show how this proves Theorem 3.9: Stmt(m) is true ∀m ≤ n. In
particular Stmt(n) is true. Therefore for an unsatisfiable CNF formula F over n
variables and for π a smallest resolution proof of F , fix b = bloga |π∗|c+ 1. Clearly
b satisfies |π∗| < ab. Therefore from Stmt(n) we have

w(` F) ≤ d+ w(F) + b

= d+ w(F) + bloga |π∗|c+ 1

≤ d+ w(F) + d+ 1, by Claim 3.10 (see below)

= 2d+ 1 + w(F)

= O(d
√

2n lnS(` F)e) + w(F)

18

Now we state and prove Claim 3.10 which completes the above arguments.

The way a and d are defined the following claim holds:

Claim 3.10. bloga |π∗|c ≤ d
√

2n lnS(` F)e = 1 · d.

Proof. We know that ln(1− x) ≤ −x, for x < 1. Put x = d/2n. We have

ln
(

1− d

2n

)
≤ − d

2n

− ln
(

1− d

2n

)
≥ d

2n

Therefore we have,

ln a ≥ d/2n, since a =
(

1− d

2n

)−1
(3.2)

Now we are ready to prove the claim. We have

bloga |π∗|c ≤ loga |π∗|

=
ln |π∗|
ln a

≤ ln |π|
ln a

, as |π∗| ≤ |π|

≤ ln |π|
d/2n

, by Equation 3.2

≤ d2n ln |π|e
d

=
d2

d
, as |π| = S(` F)

= d

�

Now we give a proof of Stmt(m),∀m ≤ n. The prove is by induction on m.

Base case When m = 0, b ≥ 0, then S(` F ′) = 1 and we are done as above.

Induction hypothesis ∀G ∈ UNSAT with m1 < m ≤ n variables. Let π′′

be a resolution proof of G with weakening rule and Q′ be the number of large
clauses in π′′. Then assume that Stmt(m1) holds. That is, ∀b if Q′ < ab then
w(` G) ≤ d+ w(G) + b.

Induction step We are given an unsatisfiable CNF formula F ′ with m ≤ n
variables and a resolution proof π′ with weakening rule. Let Q be the number of
large clauses in π′. We need to show that ∀b if Q < ab then w(` F ′) ≤ d+w(F ′)+b.
Thus consider any b such that Q < ab. And we will show that w(` F ′) ≤ d+w(F ′)+b
holds. When n ≥ m ≥ 1 and b = 0 then Q < 1 implies π′ has no large clauses and
hence w(π′) < d < 2d+ 1 +w(F ′) = 2d

√
2n lnS(` F ′)e+ 1 +w(F ′). Since w(` F ′)

19

is minimum over all proofs, the claim holds. Thus assume that b > 0. Let T be the
corresponding DAG for π′. See Figure 2(a).

w = d + w(F') + b

Assign popular

literal x=1

□

T
m<=n

Q

F'

□

T
m<=n

Q

F'

2(a)

□

T
1

m-1
Q

1

F'|
x=1

IH

□

T
1
'

w-1

F'|
x=1

Add x to
appropriate

source nodes

x

T
w
'

w

F'

2(b)

Assign popular

literal x=0

□

T
m<=n

Q

F'

□

T
2

m-1
Q

2

F'|
x=0

IH

□

T
2
'

w

T
w
'

w

(x x) (x x)

T
w
'

w

T'
of

w
width

2(c)

Figure 2: (a) General resolution proof T with weakening rule of F'
over m <= n variables. T has Q large clauses. (b) Assign popular
literal x=1 in T to get T

1
. T

1
 is a resolution proof with weakening

rule of F'|
x=1

 with Q
1
 large clauses. Using T

1
 and induction

hypothesis construct a proof of F' or derivation of x with width at
most w. (c) If (b) fails to construct a desired proof then assign
popular literal x=0 in T to get T

2
. Using T

2
, induction hypothesis

and T
w
' construct a proof T' with weakening rule of F' with width at

most w.

All proof are DAG

The idea behind this proof is to repeatedly find the popular literals appearing
in large clauses of T . Resolving on these literals at the very beginning allows us to
keep the width of the whole proof small.

Observe that F ′ contains at most 2m literals and at least d of them appears
in any large clause, hence there exists a literal say x which occurs in at least d

2m

fractions of large clauses.
(

To verify the above statement, consider a matrix A,
whose rows corresponds to large clauses and columns corresponds to literals. Thus
A has Q rows and at most 2m columns. Define A[i][j] = 1 iff jth literal belongs to
ith large clause. Clearly, each row of A has at least d 1′s and total number of 1′s
by adding row-wise in A is at least d ·Q. Let each column of A has at most M 1′s.
Then we have, M · 2m ≥ d ·Q, which implies that M ≥ d

2m
Q
)
.

Choose the literal x that occurs most frequently in large clauses and set x = 1
in T to get T1. That is, from T construct a DAG T1 as follows: ∀C ∈ T , if x ∈ C
then C ← 1 and if ¬x ∈ C then C ← C\{¬x}. After this restriction, remove all
the 1 clauses from T along with their incidence edges to get T1.

We claim that T1 is a resolution proof with weakening rule for the formula F ′|x=1:
all the source vertices of T1 trivially belongs to F ′|x=1 and also the empty clause
belongs to T1 at the top. Thus it only remains to show that all internal vertices of

20

T1 are derived either by resolution rule or by weakening rule. There are 4 cases (see
Figure 3):

Case 1 In T , if there is a clause E = (C ∨ D) which is derived from the clauses
(C ∨ ¬x) and (D ∨ x) by resolving x. Then in T1 we have the corresponding
clause E1 = (C ∨D) with only one child (C) which is a valid weakening rule.
See Figure 3(a).

Case 2 In T if there is a clause E = (¬x ∨ C ∨ D) derived from the clauses
(¬x ∨C ∨ y) and (D ∨ ¬y) by resolving y. Then in T1 we have E1 = (C ∨D)
with children (C ∨ y) and (D ∨ ¬y). A valid resolution step. See Figure 3(b).

Case 3 In T if there is a clause E = (x∨C∨D) derived from the clauses (x∨C∨y)
and (D∨¬y) by resolving on y. Then in T1 only the clause (D∨¬y) remains.
Hence nothing to prove. See Figure 3(c).

Case 4 In T if there is a clause E = (C∨D∨¬x) derived from the clause (C∨¬x)
by the weakening rule. Then in T1 we have left with E1 = (C ∨D) with only
child (C), a valid weakening rule. See Figure 3(d). Similarly if we have x in
place of ¬x then in T1 we have removed both the clauses hence nothing to
prove.

C D∨

C ¬ x∨ D x∨

C D∨

C 1

C D∨

C

3(a)T T
1

¬x C D∨ ∨

¬x C y∨ ∨ D ¬y∨

 C D∨

 C y∨ D ¬y∨

3(b)T T
1

x C D∨ ∨

x C y∨ ∨ D ¬y∨

1

1 D ¬y∨ D ¬y∨

3(c)

T

 T
1

C ¬x∨

¬x C D∨ ∨

C

 C D∨

3(d)

Figure 3: Showing different cases that arises in proving that T
1
 is

a valid resolution proof of F'|
x=1

 with weakening rule.

T

 T
1

21

Observe that as x is a popular literal it satisfies d
2m

fractions of large clauses of
T . Hence in T1 the number of large clauses left is

Q1 ≤ Q
(

1− d

2m

)
≤ Q

(
1− d

2n

)
, as m ≤ n

= Q/a

< ab−1, as Q < ab

From induction hypothesis Stmt(m − 1) is true. Thus for an unsatisfiable CNF
formula F ′|x=1 with m− 1 variables and T1 a resolution proof of F ′|x=1 with weak-
ening rule with Q1 number of large clauses, we know that ∀b if Q1 < ab then
w(` F ′|x=1) ≤ d+w(F ′|x=1) + b. In particular we know that for b− 1, Q1 < ab−1 is
true. Therefore there must be a resolution proof T ′1 of F ′|x=1 with weakening rule
having width at most d+ w(F ′|x=1) + b− 1 ≤ d+ w(F ′) + b− 1.

Let F ′¬x ⊆ F ′ be the subset of all clauses containg ¬x and let F ′′¬x ⊆ F ′¬x be
the subset of clauses which are used as initial clauses in T ′1 with ¬x being removed.
From the proof T ′1 construct a derivation T ′w by adding back ¬x in all the initial
clauses F ′′¬x and propogate them up by exactly the steps taken in T ′1. Since there is
no resolution step which resolves on x, T ′w is a valid derivation. Moreover the width
of T ′w increases by 1. There are two possibilities: either the empty clause or ¬x is
on the top of T ′w. In the first case T ′w is a resolution proof of F ′ with weakening rule
having width w(T ′w) ≤ d + w(F ′) + b which implies w(` F ′) ≤ d + w(F ′) + b and
we are done. Otherwise we have a derivation T ′w of ¬x with weakening rule from F ′

having width ≤ d+ w(F ′) + b. See Figure 2(b).
Repeat the procedure by setting x = 0 on T to get T2. That is construct a DAG

T2 from T as follows: ∀C ∈ T , if ¬x ∈ C then C ← 1 and if x ∈ C then C ← C\{x}.
After the restriction remove all 1 clauses along with their incidence edges to get T2.
By the similar argument T2 is a resolution proof of F ′|x=0 with weakening rule. The
number of large clauses left in T2 is:

Q2 ≤ Q

< ab, as Q < ab

Again by induction hypothesis Stmt(m− 1) is true. Therefore for the unsatisfiable
CNF formula F ′|x=0 with m − 1 variables and T2 a resolution proof of F ′|x=0 with
weakening rule with Q2 number of large clause, we have for b, Q2 < ab is true,
therefore there must be a resolution proof T ′2 of F ′|x=0 with weakening rule having
width d+ w(F ′|x=0) + b ≤ d+ w(F ′) + b.

Now we use the same trick as in Theorem 3.6. Let F ′x ⊆ F ′ be the subset of
clauses of F ′ containing x and let F ′′x ⊆ F ′x be the subset of initial clauses used in
T ′2 with x being removed. Using T ′2 and T ′w construct a resolution proof T ′ of F ′

with weakening rule such that w(T ′) ≤ d + w(F ′) + b as follows: add x in all the
clauses F ′′x of T ′2 and resolve them before the leaf level of T ′2 by using the copy of T ′w
which is a derivation of ¬x. See Figure 2(c). After this we again get back F ′′x which
can be used by T ′2 to derive an empty clause. Since w(T ′w), w(T ′2) ≤ d+w(F ′) + b it

22

implies that w(T ′) ≤ d + w(F ′) + b. Since w(` F ′) is minimum over all proof, the
claim follows.

�

Remark 3.11. T ′ is a resolution proof of F ′ with weakening rule and width at most
d+w(F ′)+b. From T ′ we may obtain a resolution proof T ′′ of F ′ without weakening
rule and without increasing its width. For this, first convert T ′ into a tree-like
resolution proof T3 of F ′ with weakening rule, just by rederiving all the clauses when
needed. This makes sure that every clause is used at most once in any inference
rule. Observe that this step does not increase the width of the proof. Now apply
Lemma 2.3 on T3 to obtain a tree-like resolution proof T ′′ of F ′ without weakening
rule. Observe that the width of T ′′ has not been increased as while eliminating a
weakening rule Lemma 2.3 does not increase the width of the given proof.

Corollary 3.12. For an unsatisfiable CNF formula F over n variables, we have

S(` F) = eΩ
(

(w(`F)−w(F))2

n

)
.

Proof. From theorem 3.9, we have,

w(` F) ≤ w(F) +O(
√

2n lnS(` F))

w(` F)− w(F) ≤ 2
√

2n lnS(` F)

(w(` F)− w(F))2

4n
≤ lnS(` F)

Ω
((w(` F)− w(F))2

n

)
= lnS(` F)

eΩ
(

(w(`F)−w(F))2

n

)
= S(` F)

�

3.3 Tree-like vs General Resolution Proofs

The next question is, can the width-size relationship, proved in Corollary 3.12 be
improved? M. L. Bonet and N. Galesi in their paper [11] came up with a negative
answer to this problem by proving the following theorem. Theorem 3.13 is also used
to show that there are formulas with exponential gap in the size of tree-like and
general refutation. In this section we present the proof of Theorem 3.13.

Theorem 3.13. [11] There is a family of formulas {Fn} in n variables with constant
clause width that have polynomial-size resolution proofs but require resolution proof
width Ω(

√
n)

Before proving Theorem 3.13 let us see how it show that Corollary 3.12 is tight.

From Corollary 3.12 we know that for all unsatisfiable CNF formula F over n
variables we have

S(` F) = eΩ
(

(w(`F)−w(F))2

n

)
23

And from Theorem 3.13 we know that we have an unsatisfiable CNF formula F ′

over n variables such that S(` F ′) = nO(1), w(` F ′) = Ω(
√
n) and w(F ′) = c, where

c is some constant (we will see that actually c = 3).
For contradiction let us suppose that there is some improvement on Corollary

3.12. That is for all unsatisfiable CNF formula F over n variables we have

S(` F) = eΩ
(

(w(`F)−w(F))2

n1−ε

)
, for some ε > 0 (3.3)

In particular this must hold for F ′ as well. Thus from Theorem 3.13 and Equation
3.3 we have

nO(1) = eΩ
(

(
√
n−3)2

n·n−ε

)
eO(1) lnn = eΩ

(
n+9−6

√
n

n·n−ε

)
eO(1) lnn = e

Ω
(
nε(1+ 9

n
− 6√

n
)
)

O(1) lnn ≥ nε
(
1 +

9

n
− 6√

n

)
c′ · lnn

nε
≥
(

1 +
9

n
− 6√

n

)
, where c′ is some constant

Since ε > 0, as n → ∞, c′ · lnn
nε
→ 0. However, as n → ∞,

(
1 + 9

n
− 6√

n

)
→

c1, where c1 is some constant > 0. Contradiction.

Now we start presenting the proof of Theorem 3.13. To prove Theorem 3.13,
Bonet and Galesi [11] considered the CNF formula DGTn expressing the negation
of the following graph property:

Graph Property (GP) In any simple directed graph with n vertices, closed under
transitivity, and with no cycles of size two (i.e, no 2-cycles), there is a source vertex.

They showed that a modification of DGTn formula verifies the desired proper-
ties. First we will show that (GP) holds.

Graph theoretic proof of (GP) Let G = (V,E), with |V | = n be a simple
directed graph, closed under trasitivity and with no 2-cycles.We will prove by in-
duction on n that G has a source vertex.

Base case When (n = 1), we have |E| = 0 and the unique vertex is a source vertex.

Induction hypothesis Suppose every simple directed graph with less than n > 1
vertices, which preserves transitivity and with no 2-cycles, has a source vertex.

Induction step Now we have G = (V,E), with |V | = n. For contradiction,
suppose G has no source vertex. Consider a graph G′ obtained from G by deleting
a vertex v along with its incident edges. Clearly G′ preserves transitivity and has
no 2-cycles, hence by induction hypothesis G′ has a source vertex. Let s1, . . . , sj be

24

the source vertices of G′. Now consider the graph G = G′ ∪ v. If outdegree of v
is zero then clearly source vertices of G′ remains the source vertices of G as well.
Hence we have {(v, si) ∈ E|1 ≤ i ≤ j}. As v is not a source vertex, ∃v1, such that,
{(v1, v) ∈ E}, and so on. See Figure 4.

Now consider the reverse path v, v1, v2, As G is a finite graph, this reverse
path has to end at some vertex. The end vertex can be v or a source vertex of G′

or some vi. In all the cases we have a cycle and due to transitivity we get a 2-cycle,
which is a contradiction. This proves (GP).

Encoding ¬GP as an unsatisfiable CNF formula We can easily encode ¬GP
as an unsatisfiable CNF formula DGTn over variables xi,j, i, j ∈ [n], i 6= j, which is
supposed to be assigned “True” iff there is an edge from vertex i to vertex j. DGTn
contains the following clauses:

(1) Transitivity. (¬xi,j ∨¬xj,k ∨ xi,k), i, j, k ∈ [n], i 6= j 6= k. This clause encodes
that if there is an edge from vertex i to vertex j, and vertex j to vertex k,
then there must be an edge from vertex i to vertex k.

(2) No 2-cycles. (¬xi,j ∨ ¬xj,i), i, j ∈ [n], i 6= j. This clause encodes that there
are no 2-cycles.

(3) No source vertices.
∨n
k=1,k 6=j xk,j j ∈ [n]. This clause encodes that there are

no source vertices.

As (GP) is true, there are no assignments which can simultaneously make all the
above clauses true. To be precise, every assignment to the variable of DGTn corre-
sponds to a simple directed graph on n vertices. And every satisfying assignment of
DGTn corresponds to a simple directed graph which preserves transitivity, has no
2-cycles, and has no source vertices. We know because of (GP) that there are no
such simple directed graphs. Thus DGTn is unsatisfiable.

There are
(
n
2

)
boolean variables and

(
n
3

)
3!,
(
n
2

)
, n clauses of type (1), (2), and

(3) respectively. The width of DGTn is n − 1 (i.e, w(DGTn) = n − 1), due to

25

the clauses of type (3). However, in order to prove Theorem 3.13 we need a for-
mula with constant initial width. To achieve this we introduce n new variables
y0,j, . . . , yj−1,j, yj+1,j, . . . , yn,j for each j ∈ [n] and replace the clauses in (3) by the
following clauses:

(3′) ¬y0,j ∧
∧n
i=1,i 6=j(yi−1,j ∨ xi,j ∨ ¬yi,j) ∧ yn,j

We call the modified formula as MDGTn. Clearly (3′) has n(n + 1) clauses.

Thus there are total
((

n
3

)
3! +

(
n
2

)
+ n(n + 1)

)
number of clauses in MDGTn and

MDGTn has
(
n
2

)
x-variables and n2 y-variables. Thus in total MDGTn has Θ(n2)

variables. MDGTn remains unsatisfiable CNF formula. This is because for each
j ∈ [n], if a clause in (3) evaluates to 0 by an assignment αx of x variables, then
for all possible assignments αy of y-variables the clause in (3′) for the corresponding
j, when evaluated in αx + αy gives a 0. Moreover, it can be seen that for each
j ∈ [n], if a clause in (3) evaluates to 1 by any assignment αx of x-variable then
there exists assignments αy of y-variables such that the corresponding (3′) clause
when evaluated on αx + αy also gives a 1.

Thus we have an unsatisfiable CNF formula MDGTn over Θ(n2) variables and
with w(MDGTn) = 3. Now we will show that MDGTn has a polynomial size general
resolution refutation.

Theorem 3.14. [11] There exists a general resolution proof π of MDGTn such that
|π| = nO(1). That is, S(`MDGTn) ∈ nO(1).

Proof. For each vertex j ∈ [n] we have a clause in (3), that is,
∨n
k=1,k 6=j xk,j. Let

us call this clause as 3j. Simlilarly we have CNF 3′j. First part of the proof is to
obtain 3j from 3′j for each j ∈ [n] by eliminating y-variables using resolution rule.
This can be achieved simply as follows: For each j ∈ [n], from 3′j, go on resolving
variables in this order: y0,j, y1,j, . . . , yj−1,j, yj+1,j, . . . , yn,j to get 3j. More formally
we have,

(¬y0,j) (y0,j ∨ x1,j ∨ ¬y1,j) y0,j
(x1,j ∨ ¬y1,j) (y1,j ∨ x2,j ∨ ¬y2,j) y1,j

(x1,j ∨ x2,j ∨ ¬y2,j) (y2,j ∨ x3,j ∨ ¬y3,j) y2,j...... yn,j
(x1,j · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xn,j)

Observe that this part of the proof is actually a tree-like proof of size 2n for each
j ∈ [n]. Thus overall the first part has size quadratic in n and derives DGTn from
MDGTn.

For the second part of the proof we start with the unsatisfiable CNF formula
DGTn. We will now give a general resolution refutation of DGTn. Let us define,

Cm(j) =
m∨

i=1,i 6=j

xi,j j,m ∈ [n].

and

Cm =
n∧
j=1

Cm(j) m ∈ [n].

26

The interpretation of Cm(j) for some j,m ∈ [n] is − “vertex j has an incoming edge
from at least one vertex in [m]. Similarly the interpretation of Cm for some m ∈ [n]
is − “each vertex j has an incoming edge from at least one vertex in [m].

Proof idea We will show by downward induction from n to 2 that Ck, 2 ≤ k ≤ n
is true. At the kth step we will derive Ck−1(j) for each j = 1, . . . , n using the initial
clauses and the clauses Ck(j) and Ck(k) obtained at the previous step. This will
eventually derive Ck−1. At the end we have,

C2 =
n∧
j=1

C2(j) = (x2,1) ∧ (x1,2) ∧ (x1,3 ∨ x2,3) ∧ · · · ∧ (x1,n ∨ x2,n)

Now we can easily derive an empty clause from C2 by using an initial clause of type
(2) with i = 1 and j = 2. That is,

(¬x1,2 ∨ ¬x2,1) (x2,1)
x2,1

(¬x1,2) (x1,2)
x1,22

Base case: Cn =
n∧
j=1

Cn(j) =
n∧
j=1

∨ni=1,i 6=jxi,j, is indeed (3) which we have al-

ready derived in first part from (3′). Done.

Induction hypothesis: Suppose we have derived Ck(j) =
k∨

i=1,i 6=j
xi,j = (x1,j ∨

· · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) for j = 1, . . . , n and hence Ck.

Induction step: Now we have k ∈ [n]\{1, 2}. We will show how to derive in two
steps Ck−1(j) for a value j ∈ [n] using initial clauses of type (1) (i.e, transitivity),
type (2) (i.e, no 2-cycles) and the clauses Ck(j), Ck(k).

First step (a): Perform in parallel the following resolution steps, each one resolv-
ing the variable xk,j:

(1)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬x1,k ∨ ¬xk,j ∨ x1,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬x1,k)

(2)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬x2,k ∨ ¬xk,j ∨ x2,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬x2,k)

· · ·

(j − 1)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬xj−1,k ∨ ¬xk,j ∨ xj−1,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬xj−1,k)

(j)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬xj,k ∨ ¬xk,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬xj,k)

(j + 1)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬xj+1,k ∨ ¬xk,j ∨ xj+1,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬xj+1,k)

27

· · ·

(n)a
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk,j) (¬xn,k ∨ ¬xk,j ∨ xn,j)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬xn,k ∨ xn,j)

Second step (b): Ck−1(j) is obtained by the following refutation in which we are
resolving along the variables x1,k, x2,k, . . . , xk−1,k:

(1)b Resolve x1,k from the resulting clause of (1)a and Ck(k). That is,
(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ ¬x1,k) (x1,k ∨ . . . ,∨xk−1,k)

(x1,j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xk−1,j ∨ x2,k ∨ · · · ∨ xk−1,k)

(2)b Resolve x2,k from the resulting clause of (2)a and (1)b. That is,
(x1,j ∨ · · · ∨ xk−1,j ∨ ¬x2,k) (x1,j ∨ · · · ∨ xk−1,j ∨ x2,k ∨ · · · ∨ xk−1,k)

(x1,j ∨ · · · ∨ xk−1,j ∨ x3,k ∨ · · · ∨ xk−1,k)

· · ·

(k − 1)b Resolve xk−1,k from the resulting clause of (k − 1)a and (k − 2)b. That is,
(x1,j ∨ · · · ∨ xk−1,j ∨ ¬xk−1,k) (x1,j ∨ · · · ∨ xk−1,j ∨ xk−1,k)

(x1,j ∨ · · · ∨ xk−1,j)

The resulting clause of (k − 1)b is exactly Ck−1(j).

Size of the refutation At the kth induction step for deriving Ck−1(j) for some
j ∈ [n], in the first and the second step we are using at most n resolution rules. Thus
total of at most 2n resolution rules. As to derive Ck−1 we need to derive Ck−1(j) for
each j ∈ [n] hence at the kth induction step we are using at most Θ(n2) resolution
rules. There are n − 2 induction steps and thus the total resolution rules used by
the second part of the proof is Θ(n3).

Thus in first part we have used at most n2 resolution rules and in the second
part Θ(n3) resolution rules. Hence the size of the refutation of MDGTn is bounded
by Θ(n3). We have bounded the size of the refutation in terms of the number of
vertices n in the given directed graph. We will now bound the size in terms of the
number of variable in MDGTn. We know that MDGTn has Θ(n2) variables. Let
N = cn2 be the number of variables in MDGTn. Thus size of the refutation is
bounded by Θ(n3) = Θ(N3/2). �

Till now we have shown that MDGTn which has Θ(n2) variables has constant
clause width and has polynomial size general resolution refutation. Now in the next
theorem we will prove that any resolution refutation of MDGTn contains a clause
having at least Ω(n) variables.

Theorem 3.15. [11] Any resolution proof of MDGTn must have a clause of width
Ω(n). That is, w(`MDGTn) ∈ Ω(n).

Recall as discussed in the proof of Theorem 3.1 (lower bound for PHP n
n−1),

given any resolution refutation one can test its correctness by assigning values to
the variables. A correct resolution proof shows that no assignments can satisfy all
the initial set of clauses. Consider refutations that only show that a certain subset
of assignments (i.e, critical assignments, yet to be defined) can not satisfy all the

28

initial clauses simultaneously. In other words, if we substitute any assignments from
this subset, the refutation correctly produces a 0-path. For assignments outside this
subset it may or may not produces a 0-path. Thus this has relaxed the notion of res-
olution refutation. However proving width lower bound for this relaxed refutations
also apply to the general refutations. That is, proving that any relaxed refutation
contains a clause with width Ω(n) implies that general refutation must also contains
a clause with width Ω(n).

Before proving width lower bound for relaxed refutation we need to define criti-
cal assignment along with some other notations.

Critical assignment for MDGTn First we define critical assignment for the
formula DGTn. We call an assignment of DGTn a critical assignment if it satisfies
all the clauses of DGTn except one clause of type (3). If the only falsified clause is
3j for some j ∈ [n] then we call such a critical assignment a j-critical assignment.
As already pointed out, any assignment for the variables of DGTn corresponds to
a directed graph. For a j-critical assignment the corresponding graph is a linear
directed acyclic graph on n vertices, closed under transitivity and with vertex j as
the only source vertex. This is because xi,j = 1 iff there is a directed edge (i, j)
in the graph and such a linear directed graph is closed under transitivity, has no
2-cycles, and every vertex except the vertex j has a predecessor.

A j-critical assignment for MDGTn is defined the following way: first give a j-
critical assignment αj for DGTn (i.e, only for x’s variables). Clearly αj satisfies all
the initial clauses of DGTn except 3j. Extend αj by assigning values to y-variables
in such a way as to make false only the formula 3′j and true all the other 3′k, k 6= j
As we have pointed out earlier (see before Theorem 3.14) this is always possible. A
resulting assignment βj is a j-critical assignment for MDGTn.

Some more notations For j ∈ [n], let Nj =
n∧

i=1,i 6=j
(¬xi,j ∨ ¬xj,i). Nj is satisfied

by an assignment iff vertex j does not belong to any 2-cycles in the corresponding
directed graph. Thus CNF formula Nj is satisfied by all critical assignments. Con-
sider the formula Cj = Nj ∧ 3′j. Thus Cj is satisfied by an assignment iff vertex
j does not belong to any 2-cycles and is not a source vertex in the corresponding
directed graph. Let V ars(j) be the set of variables of Cj. Observe that V ars(j)
contains all the variables of MDGTn that refer to the vertex j. Also observe that
the formula Cj is not satisfied by any j-critical assignments, but is satisfied by any
i-critical assignments with i 6= j.

Now we are ready to prove Theorem 3.15 by proving Ω(n) width lower bound for
any relaxed refutation of MDGTn.

Proof of Theorem 3.15 .
The idea behind this proof is as follows: given any relaxed refutation π of MDGTn,
we will define a complexity measure µ for each clause C ∈ π. We will show that
∃C ∈ π such that n/3 ≤ µ(C) ≤ 2n/3 and using this fact we will show that for this
C we have, width(C) ≥ n/6. This will show that w(π) = max

C∈π
{width(C)} ≥ n/6.

And since π can be any relaxed refutation, this will imply an Ω(n) lower bound on
any relaxed refutation of MDGTn.

29

Complexity measure µ For each I ⊆ [n], let CI =
∧
i∈I
Ci. For any C ∈ π, define

µ(C) as the size of the minimal I ⊆ [n] such that all critical assignments satisfying
CI also satisfy C. In other words, let P1 be the following property:

P1 ≡ ∀critical assignments β, β(CI) =⇒ β(C)

Then, for C ∈ π,
µ(C) = min

I⊆[n]
{|I| : I satisfies P1}

As C[n] is unsatisfiable ∀C ∈ π, µ(C) is defined. Call the minimal I ⊆ [n] such that
µ(C) = |I| as a certificate for µ(C).

Properties of µ Let π be any relaxed refutation of MDGTn. For any clause C ∈ π
we have,

1. µ(C) = 0, if C is any initial clause of type (1) or (2). This is because any critical
assignment satisfies initial clauses of type (1) and (2).

2. µ(C) = 1, if C is some initial clause of type 3′i. This is because a minimal
I ⊆ [n] for which CI =⇒ C holds is when I = {j}, j 6= i. Since any
j-critical assignment with j 6= i satisfies the clause 3′i. Thereby we have
µ(Ci) = 1, i ∈ [n].

3. µ(2) = n. This is because CI =⇒ 2 is true only for I = [n] as only C[n] is
unsatisfiable. For I 6= [n], let j /∈ I then a j-critical assignment satisfied CI
but not 2.

4. µ is subadditive with respect to resolution rule. That is, for a resolution rule
A B
C

, we have µ(C) ≤ µ(A) + µ(B): let J,K ⊆ [n] be the certificate for
µ(A), µ(B), respectively. Since we have A ∧ B =⇒ C and for any critical
assignment β we have β(CJ) =⇒ β(A), β(CK) =⇒ β(B) thereby, we also
have β(CJ∪K) =⇒ β(C). Hence µ(C) ≤ |J ∪K| ≤ |J |+ |K| = µ(A) + µ(B).

Claim 3.16. For any relaxed refutation π of MDGTn. There exists a clause C ′ ∈ π
such that n/3 ≤ µ(C ′) ≤ 2n/3.

Proof. The proof is similar to that of the proof of Claim 3.4. However for complete-
ness we present here once again. Consider the proof graph Gπ of π (edges are from
the conclusion to the two hypothesis). The root of Gπ corresponds to the empty
clause and leaves corresponds to the source clauses of MDGTn. One can find C ′

with the following simple search algorithm in Gπ: starting with the root vertex of
Gπ, go on descending towards source nodes by following the children with larger µ
values, until we encouter for the first time a clause A with µ(A) < n/3. The parent
of A is C ′: as A is the first clause with smaller µ values, we have µ(C ′) ≥ n/3. Also
among the two children say A and B we have, µ(A) ≥ µ(B). Thus µ(B) < n/3,
and due to property 4, µ(C ′) ≤ n/3 + n/3 = 2n/3. �

Now we will prove by contradiction that width(C ′) ≥ n/6. Suppose not. Then
width(C ′) < n/6. Let I ⊆ [n] be a certificate for µ(C ′). Thus we have, |I| ∈
[n/3, 2n/3]. Since |I| ≥ n/3 and width(C ′) < n/6 the following claim holds:

30

Claim 3.17. There exists at least an l ∈ I such that no variables from V ars(l)
belongs to C ′.

Proof. Each variable xi,j belongs to two different sets V ars(i) and V ars(j). In the
worst case all the variables in C ′ mention different vertices. By assumption we have
width(C ′) < n/6, hence they collectively captures < 2n/6 different sets V ars(·).
Since |I| ≥ n/3, there is at least one index in I verifying the claim. �

Thus we have a clause C ′ ∈ π such that µ(C ′) ∈ [n/3, 2n/3], I a certificate for
µ(C ′) and l ∈ I such that no variables from V ars(l) belongs to C ′. Given such an
l, I and C ′ we have the following Claim:

Claim 3.18. There exists an l-critical assignment α such that,

1. ∀i ∈ I \ {l}, α(Ci) = 1,

2. α(Cl) = 0, and

3. α(C ′) = 0.

Since I is a certificate of C ′ we have

∀ critical assignment β, β(CI) =⇒ β(C ′)

Also let K = I \ {l}. Then proving the following statement:

∀ critical assignment β, β(CK) =⇒ β(C ′)

will give us a contradiction, since the above statement implies that µ(C ′) ≤ |K| <
|I|. Contradiction. With this information we give a proof of Claim 3.18.

Proof of Claim 3.18 .
We will prove this by contradiction. Suppose such a critical assignment α does not
exists. Then we have three cases:

First case ∀ critical assignment β we have β(CK) = 0. In this case

∀ critical assignment β, β(CK) =⇒ β(C ′)

trivially holds. This implies that µ(C ′) ≤ |K| < |I|. Contradiction by mini-
mality of I. Therefore there exists at least one critical assignment β such that
β(CK) = 1.

Second case ∀ critical assignment β with β(CK) = 1 we have β(Cl) = 1. This
implies that

∀ critical assignment β with β(CK) = 0 we have

β(CK) =⇒ β(C ′) holds, and

∀ critical assignment β with β(CK) = 1 we have β(Cl) = 1

∴ β(CK ∧ Cl) = 1

31

∴ β(CI) = 1 =⇒ β(C ′).
thus in this case we have

β(CK) =⇒ β(Cl) =⇒ β(CI) =⇒ β(C ′) holds.

Thus this implies that µ(C ′) ≤ |K| < |I|. Contradiction by minimality of I.
Therefore there exists at least one critical assignment β such that β(CK) = 1
and β(Cl) = 0.

Third case ∀ critical assignment β we have

[β(CK) = 1 ∧ β(Cl) = 0] =⇒ β(C ′) = 1

Equivalently,
β(CK) = 0 ∨ β(Cl) = 1 ∨ β(C ′) = 1

Pick any critical assignment β.

(a) If β(CK) = 0 then β(CK) =⇒ β(C ′) holds (as in the first case).

(b) If β(CK) = 1 ∧ β(Cl) = 1 then β(CK) =⇒ β(C ′) holds (as in the second
case).

(c) If β(CK) = 1 ∧ β(Cl) = 0 then β(C ′) = 1 and hence β(CK) =⇒ β(C ′)
holds trivially.

Thus we have,

∀ critical assignment β, β(CK) =⇒ β(C ′) holds

This implies that µ(C ′) ≤ |K| < |I|. Contradiction.

Therefore there must be a critical assignment α which satisfies all the three condi-
tions of the Claim. Since α satisfies condition (1) and (2) of the Claim, it must be
an l-critical assignment. �

Fix such an l-critical assignment α. Thus we have ∀i ∈ I \{l}, α(Ci) = 1, α(Cl) =
0, and α(C ′) = 0.

Define J = [n] \ I. As |I| ≤ 2n/3, we have |J | ≥ n− 2n/3 = n/3. Therefore by
replacing I by J in claim 3.17 we deduce that there is at least one index j ∈ J such
that no variable from V ars(j) appears in C ′. By construction I ∩ J = φ therefore
j 6= l.

Now using the fact that variables from V ars(l), V ars(j) do not belongs to C ′

we construct a j-critical assignment β from the l-critical assignment α such that
∀i ∈ I, β(Ci) = 1 and β(C ′) = 0 which contradicts the assumption that I is a cer-
tificate for µ(C ′).

Construction of j-critical assignment β from l-critical assignment α
We know that α is a linear directed graph which preserves transitivity, has no cycles
and with a single source vertex l. The idea is to get another linear directed graph
from α just by placing the vertex j in front of the vertex l without distroying any
property. we call it the j-critical assignment β. See Figure 5.

32

Thus β is built the following way: change all xi,j such that α(xi,j) = 1 to 0.
Change all the symmetric values xj,i such that α(xj,i) = 0 to 1. These changes do
not affect the value of C ′ since no variables from V ars(j) appears in C ′. After this
change the variable xj,l to a value 1. Thus l is not a source vertex and hence β(3′l)
should be one. So we need to update the variables yi,l in such a way as to make
β(3′l) = 1 and thereby we have β(Cl) = 1. Observe that these changes also does
not affect the value of C ′ since no variable from V ars(l) appears in C ′. Thus now
we have β(CI) = 1 but β(C ′) = 0. Contradiction.

Thus width(C ′) must be at least n/6. This completes the proof.
�

Now we are ready to prove Theorem 3.13.

Proof of Theorem 3.13 .
Consider the family of formulas {MDGTn}. We know that MDGTn is an unsatis-
fiable CNF formula over n2 variables, has constant clause width, has a polynomial
size general resolution proof due to Theorem 3.14 but require resolution proof width
Ω(n) due to Theorem 3.15. This completes the proof.

�

Together with Corollary 3.7, Theorem 3.13 implies an exponential separation
between tree-like resolution and general resolution.

Corollary 3.19. There is a family of formulas {Fn} in n variables having polynomial-
size resolution proofs but requiring tree-like resolution proofs of size 2Ω(

√
n).

Proof. Consider the family of unsatisfiable CNF formulas over n2 variables {MDGTn}.
From Theorem 3.14, we know that MDGTn has a polynomial size general resolu-
tion refutation (i.e, S(` MDGTn) ∈ nO(1)). We also have w(MDGTn) = O(1),
and by Theorem 3.15, w(` MDGTn) = Ω(n). Therefore by Corollary 3.7 we have
ST (`MDGTn) ≥ 2w(`MDGTn)−w(MDGTn) = 2Ω(n). �

33

Chapter 4

Space and Width of Resolution

We have seen two complexity measures so far: size and width. The third complexity
measure of a resolution proof is space. The space of a resolution refutation is
the number of clauses that have to be kept simultaneously in memory to infer a
contradiction. The space used by the input clauses is not considered and these can
be downloaded to the working memory when needed.

With the realization of the importance of width as a complexity measure, addi-
tional motivation was given to understand the space measure of resolution proofs,
and their connection to both size and width. The investigation of resolution space
was initiated by Toran in 1999 [23], and several upper and lower bounds were pre-
sented for this measure [12, 4].

In this chapter, we are following the survey by Jacobo Torán titled “Space and
Width in Propositional Resolution” [22].

4.1 Definitions

Definition 4.1. (Resolution Derivation − space oriented definition). A configu-
ration is a set of clauses. For k ∈ N, we say that an unsatisfiable CNF formula
F has a space oriented resolution refutation σ bounded by clause space k if there
is a sequence of configurations F0, F1, . . . , Fs such that F0 = φ (i.e, starts with no
clause), F1 ⊆ F , Fs = {2} (the empty clause), in any configuration Fi there are at
most k clauses and for each i < s, Fi+1 is obtained from Fi by one of the following
rules:

1. Erase Fi+1 = Fi \ {C} for some clause C ∈ Fi. That is, by deleting one of
the clause from Fi.

2. Inference Fi+1 ⊆ Fi ∪ {C} for C obtained by a single application of the
resolution rule to two clauses D,E ∈ Fi. The clauses D,E are called the
assumptions and C the conclusion of the inference step. In this step one of
the clauses D or E may be erased. So Fi+1 could also be Fi ∪ {C} \ {D}.

3. Axiom Download Fi+1 = Fi ∪ {C} for some initial clause C ∈ F . That is,
by adding one of the initial clauses of F .

For σ, the minimum k satisfying above properties is said to be the clause space of σ,
denoted by Cspace(σ). The clause space needed for the resolution of an unsatisfiable

34

CNF formula F , denoted by Cspace(` F) is the minimum k for which the formula
has a space oriented refutation bounded by clause space k.

If we restrict the inference step above, such that any clause D can be used at
most once as an assumption in any inference step (i.e, once used, D is erased), then
we will have a tree-like space oriented resolution refutation of an unsatisfiable CNF
formula F . Similarly, define the clause space needed for the tree-like resolution of
F , denoted by Cspace(`tl F), to be the minimum k for which the formula has a
tree-like space oriented refutation bounded by clause space k.

If a clause C appears in Fi and Fi+1, we say its appearance in Fi is an im-
mediate predecessor of its appearance in Fi+1, and its appearance in Fi+1 is an
immediate successor of its appearance in Fi. Notice that a clause in Fi+1 can
be both an assumption, and an immediate successor of a clause from Fi. The only
clause in Fi+1 that is not an immediate successor of Fi is the conclusion of the infer-
ence. The (i+ 1)th step of the proof is the transition from Fi to Fi+1, and is denoted
as Fi ; Fi+1

In literature, there is one more refinements of space measure:

The variable space For an unsatisfiable CNF formula F , the variable space of F ,
V space(` F), is defined like the clause space of F as above, but counting the sum of
widths of the clauses of the formulas Fi in the refutation, instead of just the number of
clauses. More fomally, for a CNF formula Fi let us define lit(Fi) =

∑
C∈Fi
{width(C)}.

We say that F has a space oriented resolution proof σ bounded by variable space k
if there is a sequence of configurations F0, F1, . . . , Fs such that F0 = φ, F1 ⊆ F ,
Fs = {2}, for any configuration Fi, lit(Fi) is bounded by k and for each i < s,
Fi+1 is obtained from Fi by following one of the above rules. For σ, the minimum k
satisfying above properties is said to be the variable space of σ, denoted by V space(σ).
Similar to clause space we have V space(` F) and V space(`tl F).

We have defined clause space for space oriented resolution proofs of an unsatis-
fiable CNF formula F . Now using the following pebbling game we will define the
concept of clause space for resolution refutation of F .

Definition 4.2. (Pebbling Game) Let G = (V,E) be a connected directed acyclic
graph with a unique sink s and every vertex of G has fan-in 0 or 2. The aim of the
game is to put a pebble on the sink of the graph following this set of rules:

1. A pebble can be placed on any source vertex, that is, on a vertex with no
predecessors.

2. A pebble can be removed from any vertex.

3. A pebble can be placed on an internal vertex provided both of its children are
pebbled. In this case, instead of placing a new pebble on it, one can shift a
pebble from a child to the vertex.

The minimum number of pebbles needed to pebble the unique sink following
above rules is said to be the pebbling number of G.

Consider the proof graph Gπ corresponding to a resolution refutation π of an
unsatisfiable CNF formula F . In Gπ clauses are the vertices and edges are from the

35

hypothesis to the conclusion of an inference rule. Clearly Gπ is a DAG with initial
clauses as sources and the empty clause as the unique sink. Also indegree of each
vertex in Gπ is either 0 or 2. Hence pebbling game is well defined in Gπ. It was
observed in [12] that the clause space defined for an unsatisfiable CNF formula F in
Definition 4.1 coincides with the minimum number of pebbles needed for the pebble
game played on the graph of a resolution refutation of F . We will present this proof
in the following Lemma.

Lemma 4.3. [12] Let F be an unsatisfiable CNF formula. Cspace(` F) = min{k :
∃ resolution refutation π of F, such that Gπ can be pebbled with k pebbles }.

Proof. Suppose we are given a proof graph Gπ corresponding to a resolution refuta-
tion π of an unsatisfiable CNF formula F . The edge directions are from hypothesis
to conclusion of a resolution rule. Now given that we can play the pebble game on
Gπ with k pebbles, we will construct a space oriented refutation σ of F bounded by
clause space k.

To begin with, in the pebbling game we have no pebbles on the vertices of Gπ,
correspondingly we have F0 = φ, with no clauses. Suppose we are at the ith step in
the pebbling game and define Fi to be the set of all vertices (clauses) where pebbles
are placed. Based on the next step taken in the pebbling game we will construct
Fi+1 as follows :

1. If a source vertex (clause) is pebbled, include it in Fi to get Fi+1. Clearly
|Fi+1| ≤ k (as we are given that the total number of pebbles placed on Gπ at
any point during the game is ≤ k). This step corresponds to the step “axiom
download” of Definition 4.1.

2. If a pebble is removed from a vertex, remove the corresponding clause from
Fi to get Fi+1. Clearly |Fi+1| ≤ k, as Fi has at most k clauses. This step
corresponds to the step “erase” of Definition 4.1.

3. If a pebble is placed on some internal vertex C of G, then clearly by the
pebbling rules both of its children are already pebbled. There are two cases:
in the first case a new pebble is placed on C, in this case include clause C in
Fi to get Fi+1. In the second case, a pebble has been shifted from one of its
child to C. In this case erase that child clause and add C in Fi to get Fi+1.
Clearly in both the cases |Fi+1| ≤ k.

On the other side, suppose we are given a space oriented resolution refutation
σ = F0, F1, . . . , Fs of F , bounded by clause space k (refer Definition 4.1). We will
first create DAG G from σ. We show that ∃π, such that G = Gπ. Finally we show
that G can be pebbled with at most k pebbles.

Create a DAG G with a unique sink from σ: for each clause in σ place a vertex
in G. Add edges in G corresponding to the resolution steps taken in σ. That is, for
each resolution step in σ add an edge from the two hypothesis to the conclusion of
the resolution rule. Clearly G is a DAG with a unique sink. Consider a sequence of
vertices (say π) of G in topological order. Observe that π is a resolution refutation
of F (since the end vertex in π must be the sink vertex (empty clause), and all other
vertices must be a source vertex or an internal vertex with two incoming edges from
previous vertices and since edges in G corresponds to resolution rule in σ the internal

36

vertex must correspond to a resolvent clause). This shows that G = Gπ (where Gπ

is a proof graph of π). Now we will show how to play the pebbling game on G with
≤ k pebbles.

Place pebbles in all the vertices in Gπ corresponding to F1. As they are the
source vertices this is a valid step and since |F1| ≤ k, we have used at most k
pebbles. Similarly, suppose we have placed pebbles in all the vertices corresponding
to Fi. We will place pebbles to the vertices corresponding to Fi+1 as follows:

1. If Fi+1 is obtained from Fi by removing a clause, then remove the pebble from
it. This is a valid step as a pebble can be removed from any vertex.

2. If Fi+1 is obtained from Fi using the “inference rule” of Definition 4.1. There
are two cases: in the first case we have Fi+1 = Fi ∪ {C}, where C is the con-
clusion and D,E ∈ Fi are the two hypothesis of a resolution rule. Therefore,
we conclude that D,E are the two children of C in G and have already been
pebbled as they belongs to Fi. So put a pebble in C which is a valid step.

In the second case, Fi+1 ⊂ Fi ∪ {C}, in particular, we have added clause C
and removed one of the hypothesis from Fi to obtain Fi+1. In this case shift
the pebble from the corresponding hypothesis clause in G to C.

3. If Fi+1 is obtained from Fi by adding some initial clause C. Then put a pebble
on C in G. This is a valid step as C is the source vertex in G.

Subsequently we will reach Fs and pebble the unique sink of G. At any point of
time during the game we have used at most k pebbles as ∀i, |Fi| ≤ k. �

Thus for a resolution refutation π of an unsatisfiable CNF formula F , clause space
of π, denoted Cspace(π), is equal to the pebbling number of Gπ. From Lemma 4.3,
we conclude that, for F , there exists a space oriented resolution refutation σ of
F bounded by clause space k iff there is a resolution refutation π of F , with the
corresponding proof graph Gπ which can be pebbled with at most k pebbles. We
will call σ a clause space proof conforming to π (i.e, π and σ have the same set
of clauses). We also conclude that, Cspace(` F) = k implies − k is the minimum
integer such that F has a space oriented resolution proof σ bounded by clause space
k, and equivalently, k is the minimum integer such that, there is a resolution proof
graph Gπ which can be pebbled by k pebbles.

Now we will continue to define the concept of variable space for a resolution
refutation π of an unsatisfiable CNF formula F .

Concept of Variable space of a resolution refutation of F Observe that,
as each vertex of Gπ corresponds to a clause of π, placing a pebble on some vertex
during the pebbling game can be view as placing the corresponding clause in the
memory. Thus by counting the minimum number of pebbles needed in the peb-
bling game played on Gπ, we are actually counting the minimum number of clauses
needed to be kept simultaneously in memory if we refute F via π. Similarly, instead
of counting the minimum number of clauses, if we count the sum of width of clauses
needed to be kept in memory, and play the pebbling game on Gπ in order to min-
imize this sum and call such a game as Vpebbling game and the minimum sum as
Vpebbling number, then following Lemma 4.3 we have the following conclusion:

37

Lemma 4.4. Let π be a resolution refutation of F and Gπ be the corresponding
proof-graph of π. Then the Vpebbling number of Gπ is k iff there is a space oriented
proof σ of F conforming to π (i.e, π and σ have the same set of clauses) with variable
space bounded by k.

We will call σ a variable space proof conforming to π.

Due to Lemma 4.4, for any π ` F , the variable space of π, denoted V space(π),
is equal to the Vpebbling number of Gπ. We also conclude that, V space(` F) = k
implies − k is the minimum integer such that F has a space oriented resolution
proof σ bounded by variable space k, and equivalently, k is the minimum integer
such that, there is a resolution proof graph Gπ, with Vpebbling number k.

Lemma 4.5. For any resolution refutation π of F we have V space(π) ≤ w(π)Cspace(π).

Proof. From earlier discussions, we know that the pebbling number of Gπ is the
minimum number of clauses that has to kept simultaneously in memory in order to
refute F via π. In Vpebbling game instead of counting the number of clauses we
count the sum of width of clauses and since w(π) is the maximum width among all
the clauses in π, w(π) multiplied by pebbling number of Gπ is a valid output of a
Vpebbling game. As Vpebbling number is the minimum over all such outputs we
have, Vpebbling number of Gπ ≤ w(π)× pebbling number of Gπ. �

Lemma 4.6. Any rooted binary tree of depth (length of the longest path from leaf
node to the root) at most n can be pebbled with at most n+ 1 pebbles.

Proof. Let T be the binary tree. We will prove this by induction on the depth n of
T . For base case n = 0, T has only one node (the unique sink) and needs only 1
pebble. For induction hypothesis, assume that any binary tree of depth less than or
equal to n − 1 needs ≤ n pebbles. Now, consider a binary tree T of depth n. Let
T1 and T2 be the two subtrees from the root. Clearly, both T1 and T2 have depth
≤ n− 1 and by induction hypothesis both need at most n pebbles. First pebble the
subtree T1 with at most n pebbles, leave one pebble on the root of the subtree T1.
By using one extra pebble and reusing n− 1 pebbles from T1, pebble the root of T2.
Thus by using at most n + 1 pebbles we have pebbled roots of both the subtrees,
now shift any one pebble to pebble the root of T . �

Lemma 4.7. For an unsatisfiable CNF formula F , on n variables, Cspace(` F) ≤
n+ 1.

Proof. From Lemma 2.4, we know that every unsatisfiable CNF formula F , with n
variables can be refuted by a tree-like resolution of depth at most n (by resolving
at least one variable at each level). And due to Lemma 4.6, we can pebble tree-like
resolution of depth at most n by ≤ n+ 1 pebbles. �

Corollary 4.8. For an unsatisfiable CNF formula F , on n variables, V space(`
F) ≤ 2n(n+ 1). That is V space(` F) ∈ O(n2).

Proof. From Lemma 4.5 we know that for any π ` F , we have V space(π) ≤
w(π)Cspace(π). And since F in on n variables, w(π) ≤ 2n. By Lemma 4.7 we
have Cspace(π) ≤ n+ 1. Therefore V space(π) ≤ 2n(n+ 1). �

38

In [23] it is shown that the pigeonhole formula PHPm
n expressing the principle

that m pigeons do not fit in n holes for m > n, have resolution clause space exactly
n+ 1 independent of the number of pigeons.

From Corollary 3.19, we know that there are formulas with exponential gap in
the size of tree-like and general refutation. Also we have seen that in case of width
measure this can not happen as while transforming general resolution refutation to
tree-like refutation the clauses that needs to be rederived does not increase the width
of the refutation. For the case of space, it is shown in [13], that there is a family
{Fn} of formulas satisfying that Fn requires tree-like resolution clause space at least
n − 2 but has general refutation of clause space at most 2

3
n + 3. Thus [13] shows

that there are formulas with linear separation between the clause space measure in
tree-like and general refutations. In next section we show that clause space lower
bounds imply an exponential lower bounds on the size of tree-like refutation of F .

4.2 Clause Space and Tree-like Size

From Corollary 3.12, we know that width lower bounds implies size lower bounds
for general resolution refutation. A natural question is: does space lower bounds
can imply size lower bounds? The answer is not yet clear. However, the answer
is yes for tree-like resolution refutation. That is, in [12] it is proved that for any
unsatisfiable formula F , lower bounds for clause space of tree-like refutation of F
imply an exponential lower bounds on the size of tree-like resolution refutation of
F . We prove this in Theorem 4.11 below. For proving it we need the following
definition:

Definition 4.9. We say that a graph G1 is embedded in a graph G2 if a graph
isomorphic to G2 can be obtained from G1 by adding vertices and edges or subdividing
edges of G1 (i.e, inserting vertices in the middle of edges of G1).

Observation 4.10. Since any pebbling strategy for the rooted tree, also pebbles the
embedded subtree it follows that the number of pebbles needed for pebbling any tree is
greater than equal to the number of pebbles needed for pebbling any embedded subtree.
This observation is true for any directed acyclic graph as well where pebbling game
can be properly defined.

Theorem 4.11. [12] For an unsatisfiable CNF formula F ,

ST (` F) ≥ 2Cspace(`tlF) − 1

Proof. Let ST (` F) = s. Consider a tree-like proof π of F (i.e, π `tl F), such that
|π| is smallest. Clearly, |π| = s. Consider the proof-tree T of π. Let dc(T), s′ be the
depth and size respectively of the biggest complete binary tree embedded in T . We
claim that the depth of biggest possible complete binary tree embedded in a tree of
size s is at most blog2(s + 1)c − 1 (i.e, dc(T) ≤ blog2(s + 1)c − 1 : as |T | = s, we
have s ≥ s′ = 2dc(T)+1 − 1. Thereby

log2(s+ 1) ≥ dc(T) + 1

blog2(s+ 1)c ≥ dc(T) + 1

39

Therefore we have

dc(T) ≤ blog2(s+ 1)c − 1 (4.1)

We will show by induction on |T | that T can be pebbled with dc(T) + 1 pebbles.
Before presenting the proof, let us see how this proves the Theorem. We have

Cspace(`tl F) ≤ Cspace(π)

= number of pebbles needed to pebble T , (by Lemma 4.3)

≤ dc(T) + 1

≤ blog2(s+ 1)c − 1 + 1, (from Equation 4.1)

which will give the desired result,

s ≥ 2Cspace(`tlF) − 1.

Now we present the proof by induction on |T | that T can be pebbeled with
dc(T) + 1 pebbles.

Base case When |T | = 1 we have dc(T) = 0 and clearly 0+1 pebbles are sufficient
to pebble the only vertex in T .

Induction hypothesis Assume that all refutation tree T with |T | < s can be
pebbled with ≤ dc(T) + 1 pebbles.

Induction step Let |T | = s and T2 be the two subtrees of the root. Then we have,

dc(T) =

{
max{dc(T1), dc(T2)} if dc(T1) 6= dc(T2)
dc(T1) + 1 if dc(T1) = dc(T2)

Explanation: Let dc(T1) 6= dc(T2) and WLOG dc(T1) < dc(T2). Then clearly
dc(T) 6< dc(T2) as any complete binary subtree embedded in T2 is also in T . Now if
dc(T) > dc(T2) then there is a biggest complete binary subtree T ′ embedded in T and
clearly T ′ must contains the root of T and hence it contains at least one vertex from
subtrees T1, T2 and subsequently contains entire biggest complete binary subtree
embedded in T1, T2. But we have dc(T1) < dc(T2) hence T ′ is not complete. A
contradiction. Thus we have dc(T) = dC(T2) in this case. For the second case when
dc(T1) = dc(T2) there must be two candidate biggest complete binary subtree T ′, T ′′

in T1 and T2 respectively, with depth dc(T1) each. Consider a subtree T̃ containing
the root node of T with T ′, T ′′ as left and right children. Clearly T̃ is a complete
binary subtree embedding of T with depth dc(T1) + 1. Also T̃ is the biggest such
tree as T ′, T ′′ were the biggest.

By induction hypothesis one can pebble T1 with dc(T1) + 1 pebbles and T2 with
dc(T2) + 1 pebbles. Let us suppose dc(T1) < dc(T2), then dc(T) = dc(T2) as one
can pebble T2 with dc(T2) + 1 pebbles, leave one pebble in the root of T2. T1 can
be pebbled with dc(T1) + 1 ≤ dc(T2) pebbles which we can reuse from T2 pebbling.
Thus with dc(T2) + 1 = dc(T) + 1 pebbles we can pebble both the roots of T1 and
T2, now shift any one of the two pebbles to pebble the root of T . �

40

Remark 4.12. Observe that in the proof of Theorem 4.11 we have not used the fact
that π is a smallest size tree-like proof of F . Hence for any tree-like resolution proof
π of F , with |π| = S, we have shown that Gπ (which is a tree) can be pebbled with
d+1 pebbles, where d is the depth of the biggest complete binary tree embedded in Gπ.
And since d ≤ blog2(S + 1)c− 1, we have Cspace(π) ≤ blog2(S + 1)c ≤ log2(S + 1).

Till now we have defined three complexity measures for resolution: size, width
and clause space. We have seen size-width relation in Corollary 3.12 and size-clause-
space relation in Theorem 4.11. The next question is whether there is some relation
between width and clause space? Atserias and Dalmau [5] gave a positive answer
for this problem. For a resolution proof π of an unsatisfiable CNF formula F define
a complexity measure, ‘internal-width’ of π, denoted by iw(π). Internal-width of
π is almost similar to the width of π except that internal-width does not consider
width of initial clauses of π. More formally,

iw(π) = max
C∈π\F

{width(C)}

If we consider the proof graph Gπ of π then iw(π) is the width of largest clause
among internal vertices of Gπ. The internal width iw(` F) (resp. iw(`tl F)) of
deriving an unsatisfiable CNF formula F in general (resp. tree-like) resolution is
defined as min

π`F
{iw(π)} (resp. min

π`tlF
{iw(π)}).

The following observation shows relation between w(π) and iw(π).

Observation 4.13. For an unsatisfiable CNF formula F and a resolution proof π
of F we have

w(π) =

{
iw(π) if largest clause is some C ∈ π \ F
iw(π) + 1 if largest clause is some C ∈ π ∩ F

Explanation Consider the proof graph Gπ of π. If the largest width clause is some
internal vertex of Gπ then clearly w(π) = iw(π). Otherwise some source vertex C of
Gπ has a largest width but then the width of largest clause among internal vertices
(i.e, iw(π)) is width(C)− 1 = w(π)− 1 because, due to the resolution rule and the
fact that C has a largest width in Gπ, the width of a conclusion clause of C is one
less than width(C).

Atserias and Dalmau had shown in [5] that resolution internal-width bounds the
resolution clause space from below. They have defined a combinatorial characteriza-
tion of resolution internal-width and used it in their proof. We are going to present
this in our next section.

4.3 Combinatorial Characterization of Resolution

Width

Existential k-pebble game was first introduced by Kolaitis and Vardi [17] in the
context of Finite Model Theory. Atserias and Dalmau [5] provided a characterization
of the resolution internal-width in terms of existential k-pebble game. In the survey
[22], Jacobo Torán presented a simplified version of this game which he call Game
A.

41

Game A is played between two players, the Spoiler and the Duplicator1, on
an unsatisfiable CNF formula F . The game is played in rounds. Both players
construct a partial assignment α of the variables in F . The game starts with an
empty assignment α0 and ends with a (partial) assignment αl, where l is the first
round when partial assignment constructed so far falsifies at least one of the initial
clauses of F . In each round i, 0 ≤ i < l, of the game, Spoiler has a partial assignment
αi and can ask Duplicator for the values of a variable x in F not assigned in αi and
based on the value returned by the Duplicator, can delete some of the values assigned
in αi+x = α′i to construct a partial assignment αi+1 for the next round. Duplicator
on the other hand extends αi to α′i by giving a boolean value for x in each round i.

The goal of Spoiler is to falsify one of the initial clauses of F with the constructed
assignment while keeping the partial assignment as small as possible. Duplicator
tries to keep this from happening. If the game is terminated, we define the outcome
of the game to be the maximum number of variables that are assigned simultaneously
in partial assignment at any moment during the game. Otherwise define the outcome
to be infinity.

In particular, we may view any Spoiler strategy as a function S(α, F) → α, x
where, S takes as input an unsatisfiable CNF formula F and a partial assignment α
of variables of F and outputs a variable x in F . Similarly, any Duplicator strategy
may be viewed as a function D(α, F, x)→ 0/1 where, D takes a partial assignment
α, an unsatisfiable CNF formula F and a variable x as inputs and outputs a boolean
value for x. Given any Spoiler and Duplicator strategy S,D respectively, a run of a
Game A played between them is defined as

RunA(S,D) = α0, α
′
0︸ ︷︷ ︸

round 0

, α1, α
′
1︸ ︷︷ ︸

round 1

, . . . , αl︸︷︷︸
round l

.

Let |α| = number of variables assigned in α. The outcome of the Game A played
between S and D is defined as,

OC(S,D) =

{
max

α∈RunA(S,D)
{|α|} when game A terminates

∞ otherwise

Consider a matrix MA where each row corresponds to a Spoiler strategy S and
each column corresponds to a Duplicator strategy D. The entries of the matrix is
defined as MA(S,D) = OC(S,D). Define value of a Spoiler strategy S, denoted
as val(S), to be the maximum outcome of the Game A against any Duplicator
strategy. That is, a maximum value in the row corresponding to S in the matrix
MA. Formally,

val(S) = max
D
{OC(S,D)}

Similarly, define value of a Duplicator strategy D, denoted as val(D), to be the
minimum outcome of the Game A against any Spoiler strategy. That is, minimum
value in the column corresponding to D in the matrix MA. Formally,

val(D) = min
S
{OC(S,D)}

1The names are justified in the context of Finite model Theory.

42

Definition 4.14. For an unsatisfiable CNF formula F , define

gameA(F) = min
S

max
D

OC(S,D)

.

Theorem 4.15. [5] For an unsatisfiable CNF formula F ,

iw(` F) = gameA(F)− 1

Proof. Let iw(` F) = k. We will prove this in two parts. In part (i) we will show
that gameA(F) ≤ k + 1. In part (ii) we will show that gameA(F) ≥ k + 1.

Proof of part (i) We will prove this by giving a Spoiler strategy S ′ such that
val(S ′) ≤ k + 1. This will show that

∃S ∀D OC(S,D) ≤ k + 1

Therefore we have gameA(F) ≤ k + 1.

Spoiler strategy S ′: Consider proof graph Gπ of a resolution refutation π of minimal
internal-width for F . The strategy of S ′ is to follow a path P from the empty clause
to one of the initial clauses in Gπ maintaining the following invariant: In each round
i if S ′ is at some clause C ∈ P then αi (partial assignment at the begining of round
i) must falsify C (i.e, assign 0 to all the literals in C). At the 0th round trivially
an empty assignment α0 falsifies the empty clause in Gπ. Suppose in some round
i, S ′ is at the clause C ∈ P and αi falsifies C. Let C be obtained after resolving
x from clauses C1 and C2. S ′ asks for the value of x. As Gπ is a proof graph, any
extensions of αi to x falsifies one of the parent clauses C1, C2 of C. Depending on
the value returned for x by the Duplicator, S ′ moves to the corresponding falsified
clause. From the partial assignment αi + x which we were calling α′i, S

′ deletes the
values of variables not appearing in the new clause to get a partial assignment αi+1

for the next round. Following this strategy S ′ eventually reaches an initial clause
with a partial assignment falsifying it to end the game.

Observe that the number of variables assigned simultaneously by α is at most the
maximal internal-width of a clause in the refutation plus the variable being resolved
in each round. (note that, at the end Spoiler is on one of the initial clauses say C with
a partial assignment αl falsifying C. It may be the case that width(C) = iw(π) + 1
thereby |αl| = iw(π) + 1, however at this moment S ′ will no longer be asking for
any further variable values since game A has already terminated).

Proof of part (ii) As iw(` F) = k. We know that @ π ` F such that iw(π) =
k− 1. Using this fact we will show that there is a Duplicator strategy D′ such that
val(D′) > k. Therefore we have

∃D ∀S OC(S,D) ≥ k + 1

which implies that
∀S val(S) ≥ k + 1

43

Thus gameA(F) ≥ k + 1.

Proof of existence of duplicator strategy D′ with val(D′) > k: For any Duplicator
strategy D, in order to prove that val(D) > k we need to prove the following state-
ment:

Stmt Given a partial assignment α and x /∈ α such that α does not falsify any
clauses of F and |α| ≤ k − 1, D must have a way to find a value b ∈ {0, 1} for x
such that α + {x = b} does not falsify any clauses in F .

We now show that such a Duplicator strategy D′ exists: D′ first constructs
a set of clauses Ck−1 = {C1, . . . , Cm}, having a resolution derivation from F of
internal-width at most k − 1. As @ π ` F such that iw(π) = k − 1 we know that
2 /∈ Ck−1. As internal-width does not consider the width of initial clauses it follows
that F ∈ Ck−1. We show that there is a Duplicator strategy D′ satisfying a stronger
statement Stmt1:

Stmt1 Given a partial assignment α and x /∈ α such that α does not falsify any
clauses of Ck−1 and |α| ≤ k − 1, then D′ has a way to find a value b ∈ {0, 1} for x
such that α + {x = b} does not falsify any clauses in Ck−1.

Suppose not. Then let α+{x = 0} falsifies a clause Ci ∈ Ck−1. This implies that
Ci = C ′i ∪ {x} (because previously it must be the case that α leaves Ci undicided,
i.e, some literals of Ci are not assigned any values in α however after assigning x a
value 0, we have α(Ci) = 0). This implies that α(C ′i) = 0. As |α| ≤ k − 1 we have
width(C ′i) ≤ k − 1.

Similarly let α + {x = 1} falsifies a clause Cj ∈ Ck−1. By the similar argument,
this implies that Cj = C ′j∪{¬x}. Therefore we have α(C ′j) = 0 and since |α| ≤ k−1
we have width(C ′j) ≤ k − 1.

Combining the two, we have α(C ′i∨C ′j) = 0 and as |α| ≤ k−1 we have width(C ′i∨
C ′j) ≤ k − 1. Observe that C ′i ∨ C ′j can be obtained from Ci and Cj by resolving

variable x. That is,
Ci Cj
C′i∨C′j

. And since internal-width does not consider the width

of initial clauses C ′i ∨ C ′j ∈ Ck−1. This is a contradiction since it shows that α was
already falsifying a clause in Ck−1.

�

4.4 Width vs Space

Now we are ready to present internal-width and clause-space relation of resolution
proved by Atserias and Dalmau in 2003 [5].

Theorem 4.16. [5] For an unsatisfiable CNF formula F ,

Cspace(` F) ≥ iw(` F)− w(F) + 1

Proof. Let w(F) = w. There are two cases:

44

Case (i) iw(` F) < w. That is, iw(` F) ≤ w − 1. This implies that iw(`
F)− w + 1 ≤ 0. Thus we need to prove that

Cspace(` F) ≥ 0 ≥ iw(` F)− w(F) + 1

which is trivially true. Since by definition Cspace(` F) ≥ 0.

Case (ii) iw(` F) ≥ w. Therfore iw(` F) = k + w for some k. We will show by
the way of contradiction that Cspace(` F) ≥ k + 1, which will prove the theorem.

Suppose not. Then following Definition 4.1, there is a space oriented resolution
refutation π = F0, F1, . . . , Fm bounded by clause space k. That is, π satisfies the
following rules: F0 = φ, F1 ⊆ F , Fm = {2} (the empty clause), in each Fi there are
at most k clauses and for each i < m, Fi+1 is obtained from Fi by following rules
1, 2 and 3 of Definition 4.1.

We will show that ∀i, 1 ≤ i ≤ m, Fi is satisfiable. This will imply that Fm is
also satisfiable, which means 2 /∈ Fm. Contradiction.

We will assume WLOG that F1 has only one clause, because if say F1 has l
clauses, C1, . . . , Cl, then we can convert the refutation π to refutation π′ = F0, F11 =
{C1}, F12 = {C2}, . . . , F1l = {Cl}, F2, . . . , Fm of F bounded by clause space k.

Let si be the number of clauses in Fi. Clearly ∀i, si ≤ k by assumption. We will
give a Spoiler strategy S ′′ which will play on F such that ∀D, when S ′′ plays against
D, the following holds: at each round i, S ′′ has either a partial assignment αi, with
|αi| ≤ si ≤ k and αi satisfies Fi or S ′′ has an αi, with |αi| ≤ k + w and the game
A terminates, i.e, at least one of the initial clauses of F gets falsifies by αi. Before
describing the Spoiler strategy S ′′, let us see how this will give us a contradiction.

We have iw(` F) = k + w. Recall from the previous section that there exists a
Duplicator strategy D such that against any Spoiler strategy S, OC(D,S) > k+w.
That is

∃D ∀S OC(S,D) > k + w

Fix such a duplicator strategy D. Now consider RunA(S ′′, D). Suppose the
game A terminates at some round i. Therefore we have |αi| ≤ k + w and ∀j < i,
|αj| ≤ k. Therefore OC(S ′′, D) ≤ k + w. Contradiction.

Therefore the game A does not terminate. Which implies that αm is defined
such that |αm| ≤ k and αm satisfies Fm. The required Contradiction.

Spoiler Strategy S ′′ : We will give the strategy by induction on round i. We de-
scribe at one shot what S ′′ does in many rounds. All intermediate rounds satisfies
size requirement.

Base case: When i = 1 we have F1 = C and width(C) ≤ w, since w(F) = w.
Initially α0 is an empty assignment. S ′′ asks Duplicator the value of each of the
literals of C. If Duplicator returns a value 1 for any one of these literals, S ′′ just
set that literal 1 in α0 to get α1, with |α1| = 1 = |F1| and clearly α1 satisfies F1.
Otherwise, Duplicator returns a value zero for all the literals and S ′′ sets all literals
zero in α0 to get α1, with |α1| ≤ w ≤ k+w, and α1 falsifies the initial clause C and
the game terminates.

45

Induction step: Let we have αi−1, with |αi−1| ≤ si−1 and αi−1 satisfies all the
clauses of Fi−1 and still the Game A has not terminated. That is no initial clauses
are falsified yet. Now we have to construct αi such that |αi| ≤ si and αi satisfies
Fi, or |αi| ≤ k + w and the Game A terminates. Based on how Fi is obtained from
Fi−1 we have three cases (see Definition 4.1):

Case 1: Erase Let Fi is obtained from Fi−1 after deleting a clause Cl. In αi−1, if
literal ll is responsible to satisfy Cl and for all other clauses in Fi−1, we have
different literals responsible for satisfying them, then αi can be obtained from
αi−1 just by deleting ll from αi−1. Clearly αi satisfies Fi and also we have,

|αi|+ 1 = |αi−1| ≤ si−1 = si + 1

which implies |αi| ≤ si as required. In other case when ll is the only literal
responsible to satisfy Cl and to some other clause Ci then we know that αi−1 <
si−1. We will set αi = αi−1. Clearly αi satisfies Fi and,

|αi| = |αi−1| < si−1 = si + 1

which implies |αi| ≤ si as required.

Case 2: Inference Let Fi is obtained from Fi−1 by adding the resolvent of some
two clauses of Fi−1. In this case S ′′ sets αi = αi−1. This is because αi−1 itself
satifies Fi as it satisfies the two parent clauses in Fi−1 hence it will also satisfy
the resolvent clause in Fi and clearly we have,

|αi| = |αi−1| ≤ si−1 ≤ si

which implies |αi| ≤ si as required. In the above Equation the last inequality
is not strict because inference rule may delete one of the parent clause as well.

Case 3: Axiom Download Let Fi is obtained from Fi−1 by adding an initial
clause C. In this case S ′′ asks Duplicator for the values of all the literals
in C that are not assigned at this point. If any one of the literals is set to 1 by
the Duplicator then S ′′ extends αi−1 to αi by setting the corresponding literal
to 1. In which case clearly αi satisfies Fi and we have,

|αi| = |αi−1|+ 1 ≤ si−1 + 1 = si

which implies |αi| ≤ si as required. In other case when Duplicator returns a 0
for all the literals in C, S ′′ extends αi−1 to αi by assigning 0 to all the literals
of C. As there are at most w literals in C we have,

|αi| ≤ |αi−1|+ w ≤ si−1 + w ≤ k + w

which implies |αi| ≤ k+w, and in this case αi falsifies the initial clause C and
the game A gets terminated.

�

We end this chapter by giving a combinatorial characterization of tree-like reso-
lution space.

46

4.5 Combinatorial Characterization of Tree-like

Resolution Clause Space

Impagliazzo and Pudlák in [20] gave a combinatorial characterization for tree-like
resolution clause space in terms of a 2-player game. Torán in [22] called this game
as Game B.

Game B is played between two players, the Prover and the Delayer, on an un-
satisfiable CNF formula F . The game is played in rounds. Both players construct
in steps partial assignment α for the formula. The game starts with an empty as-
signment α0 and ends with a partial assignment αl where, l is the first round when
at least one of the initial clauses of F gets falsified by the partial assignment con-
structed so far. In each round i, 0 ≤ i < l, Prover has a partial assignment αi and
chooses a variable x to be assigned that has not yet assigned. Then Delayer chooses
one of 0, 1, or ∗ for the variable x in the same round. If 0 or 1 is chosen, no points
are scored by the Delayer and the variable is set to the chosen bit and the next
round begins with the updated partial assignment αi+1. If ∗ is chosen, then Delayer
scores one point, but Prover then can choose the value for the variable to construct
an updated partial assignment αi+1 for the next round. When a variable has been
assigned a value, it remains with this value until the end of the game.

The goal of Delayer is to score as many points as possible and Prover tries to
prevent this. The outcome of the game is the number of points scored by Delayer.

In particular, we may view any Prover strategy as a function P (α, F)→ α, x, b,
where x to be queried, and assigned b if D says ∗. Similarly, any Delayer strat-
egy may be view as a function D(α, F, x) → 0/1/∗. For any Prover and Delayer
strategies P,D respectively, a run of Game B played between them is defined as:

RunB(P,D) = α0, α1, . . . , αl.

The outcome of the Game B played between P and D is defined as:

OC(P,D) = Number of times Delayer returns ∗ in the RunB(P,D)

Consider a matrix MB where each row corresponds to a Prover strategy P and
each column corresponds to a Delayer strategy D. The entries of the matrix is
defined as MB(P,D) = OC(P,D). Define value of a Prover strategy P , denoted
as val(P), to be the maximum outcome of the Game B played against any Delayer
strategy. That is, a maximum entry in the row corresponding to P in the matrix
MB. Formally,

val(P) = max
D

OC(P,D)

Call a Prover strategy with minimum value as an optimal Prover strategy, denoted
as P ∗. Thus for P ∗ we have,

val(P ∗) ≤ val(P),∀P

Similarly, define value of a Delayer strategy D, denoted as val(D), as the minimum
outcome of the Game B played against any Prover strategy. That is, a minimum

47

entry in the column corresponding to D in the matrix MB. Formally,

val(D) = min
P
OC(P,D)

Call a Delayer strategy with maximum value as an optimal Delayer strategy, denoted
as D∗. Thus for D∗ we have,

val(D∗) ≥ val(D),∀D

Definition 4.17. For an unsatisfiable CNF formula F , define

gameB(F) = max
D

min
P
OC(P,D) = max

D
val(D) = val(D∗).

Theorem 4.18. [13] For an unsatisfiable CNF formula F

Cspace(`tl F) = gameB(F) + 1

Proof. Let Cspace(`tl F) = s. We will prove the theorem in two parts: (i)
gameB(F) ≥ s− 1 and (ii) gameB(F) ≤ s− 1.

Proof of part (i) For proving this we will give a Delayer strategy D′ such that
val(D′) ≥ s−1. That is, D′ scores at least s−1 points against any Prover strategy.
This will give the desired result as,

gameB(F) = val(D∗) ≥ val(D′) ≥ s− 1

Delayer strategy D′ : We will give the Delayer strategy based on induction on the
number of variables in F . Let n denotes the number of variables in F .

Base Case: When n = 1, F has only one variable and hence F = x ∧ ¬x. Clearly
tree-like resolution refutation for F contains only two leaf nodes x,¬x and a root
node for the empty clause (i.e, 2). Therefore s = 2 in this case. D′ just returns a ∗
for the value of x asked by the Prover and scores 1 points.

Induction Step: For n > 1, let x be the first variable asked by Prover and let
F |x=1 and F |x=0 be the CNF formulas obtained after assigning 1 and 0 respectively
to variable x in F . Clearly in F |x=1 (resp. F |x=0) all the clauses containing x (resp.
¬x) becomes 1 and ¬x (resp. x) has been dropped from all the clauses containing
it. Delayer D′ constructs an optimal clause space tree-like resolution refutation T1

for the formula F |x=1. Let s1 represents the clause space of T1. Put back ¬x in T1,
that is put back ¬x in all the clauses of F |x=1 from where it has been dropped and
propagate it up in T1 through the resolution rule. Call the tree obtained as T ′1. See
Figure 6(a). There are two possibilities: either the root of T ′1 contains ¬x or 2. In
the second case clearly s1 = s and existence of T ′1 shows that F can be refuted just
from the clauses of F that do not contain x. Thus D′ returns 1 as the value of x.
By the induction hypothesis, D′ can score at least s1− 1 = s− 1 points playing the
game on F |x=1.

In the first case, i.e, when the root of T ′1 contains ¬x, D′ constructs an optimal
clause space tree-like resolution refutation T2 for the formula F |x=0. Let s2 represents

48

the clause space of T2. Similarly put back x in T2 to get T ′2. See Figure 6(b). If the
root of T ′2 contains the empty clause 2 then s2 = s. In this case D′ returns a 0 as
the value of x. By induction hypothesis, D′ can score at least s2 − 1 = s− 1 points
playing on F |x=0.

□ x /□

T
1

n-1
s

1

F|
x=1

Put x back inT
1

T
1
'

n

s
1

□ x /□

T
2

n-1
s

2

Put x back inT
2

T
2
'

n

s
2

F|
x=0

F|
x=1

F|
x=0

 x

T
1
'

n

s
1

F|
x=1

 x

T
2
'

n

s
2

F|
x=0

□

T

F

ŝ

Figure 6: (a) D' constructs minimum clause space
tree-like refutation for F|

x=1
. Then put back x in T

1

to get T
1
'. If empty clause appears at the top, D'

returns x=1 and plays in T
1
'. Otherwise, (b) D'

constructs T
2
' from F|

x=0
 as in (a). If empty clause

appears in top of T
2
', D' returns x=0 and plays in

T
2
'. (c) If x, x appears at the top of T

1
', T

2
'

respectivley, D' construct T as above and plays in
that subtree which has maximum clause space.

6(a)

6(b)

6(c)

The remaining case is when the roots of T ′1, T
′
2 contains ¬x, x respectively. In this

case, D′ construct a tree-like resolution refutation T of F using T ′1, T
′
2. To construct

T , D′ resolved ¬x, x at the roots of T ′1, T
′
2 to get an empty clause (2) at the top of

T . Let ŝ represents the clause space of T . See Figure 6(c). Clearly we have s ≤ ŝ.
We have two subcases:

Subcase 1 (s1 = s2) In this case we have ŝ = s1 + 1 (first pebble the subtree T ′1
using s1 pebbles, leave one pebble on the root of T ′1. By using one extra pebble
and reusing s1 − 1 pebbles from T ′1, pebble T ′2 which require s2 = s1 − 1 + 1
pebbles. Thus with total s1+1 pebbles we pebbled roots of both the subtrees of
T . Reuse one of them to pebble its root). This implies that s1 = ŝ−1 ≥ s−1.
Similarly, s2 ≥ s− 1.

In this case, D′ answers a ∗ as the value of x asked by the Prover and scores
one point. Again by induction hypothesis, D′ scores at least s−2 more points
by playing the game in either of the formulas F |x=1 or F |x=0.

Subcase 2 (s1 6= s2) In this case ŝ = max{s1, s2} (let s1 < s2, then pebble T ′2 with
s2 pebbles. Leave one pebble on the root of T ′2, and by reusing s1 ≤ s2 − 1

49

pebbles, pebble T ′1. Thus by using only s2 pebbles both the children of the
root of T have been pebbled, shift one of them to pebble the root. s2 is the
minimum number of pebbles to pebble T because we are given that this is the
minimum to pebble T ′2). This implies that max{s1, s2} ≥ s, as ŝ ≥ s.

In this case, D′ returns the value leading to the formula that requires tree-
like resolution space at least s and thereby can score at least s − 1 points
by induction hypothesis playing on the corresponding formula. For example,
D′ returns x = 1, if s1 > s2 and starts playing on the formula F |x=1, which
has n − 1 variables and tree-like resolution clause space at least s hence by
induction hypothesis D′ scores at least s− 1 points.

Proof of part (ii) We need to prove: gameB(F) = val(D∗) ≤ s − 1. To prove
this we will first define a partial Prover strategy P ′ and then based on the Game B
played between D∗ and P ′ we will prove the desired result.

Partial Prover strategy P ′ : Consider a tree graph Tπ of a tree-like resolution refuta-
tion π of F with minimum clause space. The partial Prover strategy P ′ is to follow
a path Q from the empty clause to one of the initial clauses in Tπ maintaining the
following invariants: in each round i, if P ′ is in some clause C ∈ Q then αi (partial
assignment constructed during the Game B in round i) must falsifies C (i.e, assigns
0 to all the literals in C) and if Delayer returns a ∗ as the value of variable x queried
in round i then P ′ has to mark C with ∗.

In round 0, P ′ has an empty assignment α0 which trivially falsifies the empty
clause. Suppose in Tπ variable x is resolved to get an empty clause. P ′ asks Delayer
for the value of x. If Delayer returns a 0/1 for the value of x, P ′ updates the
partial assignment to α1 accordingly and goes to that parent clause of 2 which gets
falsified by α1 (by the nature of resolution one of the parent has to get falsified). If
the Delayer returns a ∗ then P ′ marks the empty clause with a ∗ and chooses any
value 0/1 as the value of x, updates the partial assignment to α1 and goes to that
parent clause of 2 which gets falisfied by the updated assignment α1.

In particular, in round i, P ′ is in some clause C ∈ Q which is falsified by the
partial assignment αi. Let C0 and C1 be the parent clause of C and C is obtained
by resolving variable x. P ′ asks Delayer for the value of x. If Delayer returns 0/1,
P ′ updates αi to αi+1 accordingly and goes to a parent clause C0 or C1 which gets
falsified by αi+1. If Delayer returns a ∗, P ′ marks C with a ∗, chooses a value 0/1
for x, updates αi to αi+1 accordingly, and moves to C0 or C1 which gets falsified by
αi+1.

Clearly P ′ is a partial strategy. Consider the set of all Prover strategies extending
P ′. That is,

P = {P ′′|P ′′extends P ′}

Fix a Delayer strategy D∗ (recall this is an optimal Delayer strategy). Let us denote
T (D∗, π) the subtree of Tπ formed by all the clauses that can be visited by P ′ and
the edges joining them in the Game B played between D∗ and P ′. Subtree T (D∗, π)
has the following properties:

1. It contains the empty clause 2 (as P ′ starts Game B from the empty clause
of Tπ).

50

2. It contains all the ∗ marked nodes of Tπ and they are the only branching nodes
of T (D∗, π) (as from marked clause P ′ can move to any one of its parent clause).

3. The pebbling number (recall Definition 4.2) of T (D∗, π) is less than equal to
the pebbling number of Tπ (indeed this is true for any subgraph since any
pebbling strategy for a graph works for its subgraph as well).

4. For each path Q from the empty clause to a initial clause in T (D∗, π), there is
a Prover strategy P ∈ P such that Q represents a run of the Game B played
between P and D∗.

5. As val(D∗) = gameB(F), every path from an empty clause to some initial
clause in T (D∗, π) contains at least gameB(F) number of ∗ marked nodes.

Thus we have,

Cspace(`tl F) = s

= minimum number of pebbles required to pebble Tπ

≥ minimum number of pebbles required to pebble T (D∗, π)

≥ gameB(F) + 1, From Lemma 4.19 (below)

This will prove part (ii), that is, gameB(F) ≤ s− 1.
So put together part (i) and (ii), we have shown that gameB(F) = s − 1, which
completes the proof of Theorem 4.18.

�

Lemma 4.19. Minimum number of pebbles needed to pebble T (D∗, π) is at least
gameB(F) + 1.

Proof. Consider any optimal pebbling strategy for T (D∗, π). We will show that this
will take at least gameB(F) + 1 pebbles.

At the end of any pebbling game, all paths from the empty clause (root) to any
initial clause (leaf) in T (D∗, π) has a pebble because root has a pebble and it lies in
all such paths. Let m be the first moment when all root-to-leaf paths in T (D∗, π)
have a pebble. At (m − 1), some root-to-leaf path say ρ does not have a pebble.
Clearly at moment m we must place a pebble at the leaf of ρ which is an initial
clause say C. This is because by the pebbling rules, we can not place pebbles on
any internal node of ρ as all of its children are not already pebbled. And once that
pebble is placed on C, all root-to-leaf paths have a pebble, so before placing that
pebble, all such paths except ρ already have a pebble.

Now consider all the paths branching out from ρ. All of these already have a
pebble at time m-1. But the pebble cannot be in the part of the path common
with ρ. So each part hanging out has a pebble. There are at least gameB(F) paths
hagging out (from properties 2 and 5 of T (D∗, π)), all disjoint. So we have at least
gameB(F) pebbles at moment m− 1 and one more at moment m. �

51

Chapter 5

Size-Width Tradeoffs for Tree-like
Resolution

In [7] Eli Ben-Sasson investigates tradeoffs of various basic complexity measures
such as size, space, and width. He showed examples of formulas that have optimal
resolution proofs with respect to any one of these parameters, but optimizing one
parameter must cost an increase in the other. However, in this chapter we will
present the basic tradeoff result for only tree-like resolutions from [7]. The tradeoffs
is exposed by a family of pebbling contradictions.

Definition 5.1. (Pebbling Contradictions) [7]. Let G = (V,E) be a directed acyclic
graph in which every vertex has fan-in 2 or 0 with a unique sink s. We call a graph
with these properties a circuit-graph. Associate a boolean variable xv with every
vertex v ∈ V (G). PebG, the pebbling contradiction of G is the conjunction of:

(1) Source axioms xv for each source v.

(2) Sink axiom ¬xs for unique sink s of G.

(3) Pebbling axioms ¬xu ∨ ¬xw ∨ xv, for u,w the two predecessor of v and for
each internal vertex v of G.

Observation 5.2. PebG is an unsatisfiable 3-CNF formula.

Proof. To make an assignment α which evaluates PebG to 1, we have to set all
clauses of type (1) 1 in α, thereby variables corresponding to all internal vertices
have to be set to 1 including the variable for s, (i.e, xs) , hence clause of Type (2) can
not be satisfied. On the other hand, if we start constructing a satisfying assignment
by setting ¬xs = 1, then due to the clause of type (3) for s, variables corresponding
to one of its children has to be assigned 0, thereby one of the variables for the source
node has to be assigned a 0, hence in this case not all the clauses of type (1) can be
satisfied. �

Also observe that PebG is a Horn CNF formula with |V | variables and |V | + 1
clauses.

Eli Ben-Sasson shows that for certain circuit-graphs G with n vertices, the tree-
like resolution of the formulas PebG presents the following tradeoff:

52

Theorem 5.3. [7] For infinitely many integers n, there exist contradictions Fn over
n variables of size (number of clauses) n+ 1 such that:

1. Fn is a Horn CNF (i.e, every clause has at most one positive literal).

2. ST (` Fn) = O(n) and Cspace(` Fn) = O(1). Moreover, there exist tree-like
proofs of Fn with linear size and constant clause space simultaneously.

3. w(` Fn) = O(1).

4. For any tree-like proof π of Fn:

w(π) · log2 |π| ≥ w(π) · Cspace(π) ≥ Ω
(n

log2 n

)
.

As already pointed out, the tradeoff will be exposed by the pebbling contradic-
tion. Given any circuit-graph G = (V,E), we first show that PebG has a linear size
and with width O(1) resolution proof. This in particular proves part 3 of Theorem
5.3.

Lemma 5.4. [7] For any circuit-graph G = (V,E), there exists a resolution proof
π of PebG such that |π| = O(|V |) and w(π) = O(1).

Proof. Resolution proof π is as follows:

Fix a topological ordering on the vertices V of G. In this order we derive induc-
tively for each v ∈ V the clause (xv).

Base case In the topological ordering all source vertices of G appears at the begin-
ning. The variables corresponding to them are precisely the initial clauses of type
(1). Hence they come for free.

Induction step Suppose we are at some internal vertex v ∈ V . By induction
hypothesis variables (clauses) corresponding to all the vertices before v in the topo-
logical odering have already been derived. Let u and w be the two children of v in
G. Using the initial clause of type (3) for v and the clauses xu, xw we derive xv as
follows:

(xu) (¬xu ∨ ¬xw ∨ xv) xu
(xw) (¬xw ∨ xv) xwxv

Thus at last we will derive the clause xs and using the initial clause of type (2)
(i.e, ¬xs) we have a contradiction.

Size and width of π Each internal clauses is derived using two resolution steps
and we use one more step to derive the empty clause at the end. Thus we have
|π| ≤ 2|V | + 1 = O(|V |). Clearly every clause C ∈ π has width(C) ≤ 3. Thus
w(π) = O(1). �

53

In order to prove part 2 of Theorem 5.3, we need the concept of decision trees.

Decision trees
Let F be a CNF formula over n variables and m clauses. A search problem
for F is the following: given an assignment α of the variables of F , find a clause
Ci ∈ F, 1 ≤ i ≤ m such that α(Ci) = 0, if there is such a clause, otherwise answer
1.

Definition 5.5. (Decision trees for CNF search problems) A decision tree is a binary
tree, with internal vertices labeled by variables, edges labeled by 0 or 1, and leaves
labeled with the possible outputs. Every assignments to the variables defines a path
through the tree in the natural way, and the label at the end of the path is said to be
the output of the decision tree on that assignment.

We say that D is a decision tree for the search problem for F if D correctly
solves F on every input (assignment). For a CNF formula F , let SD(F) denote the
minimal size of a decision tree solving the CNF search problem for F .

The following Lemma shows that decision trees for an unsatisfiable CNF formula
F are closely related to tree-like resolution proof of F :

Lemma 5.6. [8] For an unsatisfiable CNF formula F , ST (` F) = SD(F).

Proof. The tree of the resolution refutation is a decision tree, where each internal ver-
tex is labeled by the variable resolved upon at that step. Hence ST (` F) ≥ SD(F).
More formally, let T be a smallest size tree-like resolution proof of F . We will show
by induction on |T | that there is a decision tree with the same tree structure as T
which solves the search problem for F .

Base case When |T | = 1, T has just an empty clause. Thus F must contain an
empty clause. Corresponding decision tree consist of a single vertex labeled by the
index corresponding to the empty clause of F .

Induction step When |T | > 1, let x be the last variable on which the refutation
resolves. Let T0, T1 be the two subtrees from the root inferring say x and ¬x respec-
tively. From Lemma 3.8, for b ∈ {0, 1} the tree-like resolution Tb can be restricted
to a refutation of F |x=b. By induction hypothesis, Tb can be transformed into a deci-
sion tree Db which solves the search problem for F |x=b. Clearly, the search problem
for F can be solved by a decision tree which queries x and if x = b it applies the
decision tree Db.

For the opposite direction (i.e, for proving SD(F) ≥ ST (` F)), we claim that
given a decision tree D, we can derive from it a tree-like refutation without increas-
ing its size. As F is unsatisfiable, every leaf of D is labeled by a clause, since 1 is
not a legitimate answer.

Look at the two leaves labeled Ci, Cj with their parent v labeled x. If x does
not occur in one of the two clause (WLOG. say Ci), then label v with Ci, erase its
sons and make the tree smaller. Otherwise, WLOG. x must appear in Ci in positive
form and in Cj in negative form. In this case we label v with the consequence

54

of resolving Ci, Cj on x. Continuing in this way up through the decision tree we
conclude SD(F) ≥ ST (` F). �

Now the following Lemma proves part 2 of Theorem 5.3.

Lemma 5.7. [7] For any circuit-graph G = (V,E), there exists a tree-like resolution
proof π of PebG with |π| = O(|V |) and Cspace(π) = O(1).

Proof. For the searching problem of unsatisfiable CNF formula PebG, we will con-
struct a decision tree D of linear size which can be pebbled with constant number
of pebbles. Thereby using Lemma 5.6 we have a tree-like resolution refutation T
of linear size and constant clause space. We will use the term vertex to denote the
vertices of G and nodes to denote the vertices of the decision tree D.

Linear size decision tree for PebG Define a topological ordering of the vertices
of G, and query vertices according to this order. If one of the answer (0 or 1) leads to
a falsifying assignment to some initial clause, label this answer with that clause and
proceed via the other answer. If both the answers lead to a falsifying assignment to
some clauses then label both the answers with the corresponding clauses and stop.

Claim 5.8. When a vertex v is queried, answering 0 leads to a falsifying assignment.

Proof. We will prove this by induction on the topological ordering on the vertices
of G. If v is a source vertex, then answering 0 will falsifies the source axiom xv.
So let v is any internal vertex with children u,w. Since we are quering vertices in
topological ordering, we must have queried vertices u,w. By induction hypothesis,
we must have answered both queries by 1, because answering 0 would lead to a
falsifying assignment. So we have u = w = 1 and answering v = 0 will falsifies the
pebbling axiom (¬xu ∨ ¬xw ∨ xv). This completes the proof of Claim 5.8. �

By Claim 5.8, each node in D has one branch that leads immediately to a
falsifying assignment. At last when we query the sink s, answering 1 falsifies the
sink axiom. Thus for s both answer falsifies some clauses which completes the
decision tree. Thus the resulting decision tree D is just a linear path of n nodes
with a subtree of size one hanging at every node. Thereby D can be pebbled with
constant number of pebbles. �

We have seen that part (1), (2) and (3) of Theorem 5.3 is true for PebG, con-
structed from any circuit graph G. We now give an intuition, in Remark 5.9 (below)
that this is not true for part (4) of Theorem 5.3. That is, part (4) of Theorem 5.3
is not true for PebG, constructed from any circuit graph G.

Remark 5.9. Let G = (V,E) be any circuit graph, with a unique sink s. For sim-
ilicity let G be as in Figure 7. Inspired from the above proof, one may derive a
contradiction of PebG as follows: consider vertices of G in reverse topological order:
s, w, v, q, t, p, a, b, c, d, e. Perform the resolution steps based on this order and call
the conclusion of ith resolution step as clause (i).

Resolution step (1) Apply resolution rule on the sink axiom and pebbling axiom
corresponding to s, and resolve variable xs.

55

(¬xs) (¬xw ∨ ¬xv ∨ xs) xs
(¬xw ∨ ¬xv)

View clause (1) as a cut in G, which separates vertex s from rest of the graphs (see
Figure 7).

Resolution step (2) Apply resolution rule on clause (1) and pebbling axiom cor-
responding to internal vertex w, and resolve variable xw.

(¬xw ∨ ¬xv) (¬xq ∨ ¬xt ∨ xw)
xw

(¬xv ∨ ¬xq ∨ ¬xt)
View clause (2) as a cut in G, which separates s and w from the rest of G (see
Figure 7). Similarly, we have clause (3) to (6). Clearly clause (6) = (¬xa ∨ ¬xb ∨
¬xc ∨ ¬xd ∨ ¬xe) separates all internal vertices from the source vertices of G.

Now by applying resolution rule on clause (6) and the source axioms, we get an
empty clause:

(xa) (¬xa ∨ ¬xb ∨ ¬xc ∨ ¬xd ∨ ¬xe) xa
(xb) (¬xb ∨ ¬xc ∨ ¬xd ∨ ¬xe) xb

(xc) (¬xc ∨ ¬xd ∨ ¬xe) xc
(xd) (¬xd ∨ ¬xe) xd

(xe) (¬xe) xe2

Size and clause space of the proof Clearly the proof mentioned is a tree-like
resolution proof. The proof is a linear path of n vertices with a subtree of size one
hanging at every vertex. Hence the proof has linear size and constant clause space.

Now consider the width of the proof. As seen in Figure 7, the width of this proof
is actually a largest cut in G which separates s from the source vertices. Thus the
conclusion of these remark is, in order to prove part 4 of Theorem 5.3, one should
consider circuit-graphs which does not contain any cuts of smaller size separating
sink vertex from source vertices.

56

We will now prove that part (4) of Theorem 5.3 holds for PebG constructed from
any circuit-graph G on n vertices which has large black-white pebbling number,
denoted BW -Peb(G) (defined below in Definition 5.11). To be precise, consider any
graph G̃n on n vertices with BW -Peb(G̃n) = Ω(n/ log n). The existence of such
a graph has already been proved by Gilbert and Tarjan in 1978 [15]. Here we are
stating their theorem without proof:

Theorem 5.10. [15] For arbitrarily large n, there exists circuit-graphs G̃n on n
variables such that

BW -Peb(G̃n) = Ω
(n

log n

)
Now for the circuit graph G̃n, define an unsatisfiable CNF formula PebG̃n . We

will prove that part 4 of Theorem 5.3 holds for PebG̃n . Before proving this we need
to first define black-white pebbling game and essential proofs.

Definition 5.11. (Black-White Pebbling Game) Let G = (V,E) be a circuit-graph
with a unique sink s. The game is played on G with two types of pebbles called black
pebbles and white pebbles. The game starts with no pebbles on G, following the rules
of pebbling game, the goal is to pebble the unique sink s either by a black or a white
pebble and finish with no pebbles on G.

To be precise, at any point in the game, some vertices of G will have pebbles
on them (one pebble per vertex), where some of the pebbles are black and some are
white. A configuration C is a subset of vertices, consisting just those vertices that
have pebbles on them, each labeled by B,W according to the color of the pebble. That
is, C = {(B,W) : B,W ⊆ V with black, white pebbles respectively and B ∩W = φ}.
The rules of the pebble game are as follows:

1. A white pebble may be placed on any vertex.

2. A black pebble may be removed from any vertex.

3. If all immediate predecessors of a white-pebbled vertex v have pebbles (either
B or W) on them, the white pebble can be removed from v.

4. If all immediate predecessors of a vertex have a pebble (either B or W) on
them, a black pebble may be placed on that vertex.

A legal black-white pebbling of G is a sequence of configurations {C0, . . . , Cl}, where
C0 = Cl = φ, there exists a k, 1 ≤ k ≤ l such that s ∈ Ck (i.e, s ∈ Bk or s ∈ Wk),
and Ct follows from Ct−1 by one of the above rules. The number of pebbles used in
such a legal pebbling is the maximal number of pebbles used by any configuration
Ct. The black-white pebbling number of G, denoted BW -Peb(G), is the minimum
number of pebbles needed in any legal black-white pebbling of G.

Definition 5.12. (Essential proofs) Let π be a resolution proof of an unsatisfiable
CNF formula F and σ = F0, . . . , Fl a (clause\variable) space proof conforming to
π (see chapter 4 for definitions), we define essential clauses in Fi’s by backward
induction.

1. Let l be the first step such that 2 ∈ Fl. Then 2 is essential at step l.

57

2. If C is an essential clause at step i, and was inferred in the ith step from the
assumptions D,E, then D,E are essential at step i− 1.

3. If C ∈ Fi is essential at step i then C is essential at step i − 1, provided
C ∈ Fi−1. That is, if C ∈ Fi is neither an axiom download nor derived at step
i, and is essential at step i then C must belongs to Fi−1 and is essential at
step i− 1.

A (clause\variable) space proof σ is called essential if all clauses in it are essential
at all steps.

Observation 5.13. Removing non-essential clauses from a (clause\variable) space
proof conforming with π gives an essential (clause\variable) space proof that con-
forms with π without increasing the (clause\variable) space, width or size.

Using Observation 5.13 we can assume from now that all our space oriented
proofs are essentials. For F a CNF formula, (i.e, a set of clauses) define V ars(F)
to be the set of variables appearing in clauses of F .

Observation 5.14. For σ = F0, . . . , Fl an essential space proof of F . The following
statements holds:

1. l is the first step such that 2 appears in Fl, and Fl = {2}.
Explanation From Definition 5.12, 2 ∈ Fl is an essential clause. Fl contains
only the empty clause because none of the clauses from Fl can derive this empty
clause, hence they can not be essential.

2. As there are no non-essential clauses in any Fi’s, Fi+1 is obtained from Fi
only by the following two rules:

Axiom download Fi+1 = Fi ∪ C, where C ∈ F .

Inference Fi+1 = Fi ∪ C\D, where A,B ∈ Fi, A B
C

and D ⊆ {A,B}

Explanation Suppose clauses C1, C2 ∈ Fi and C1, C2 /∈ Fi+1. Since each Fi’s
consists of only essential clauses, both C1, C2 are essential in Fi but not in Fi+1.
Since essential clauses are defined by backward induction, it must be the case
that there exists a clause C3 ∈ Fi+1 such that, C1 C2

C3
. Thus in essential space

proof erasure happens only during inference rule. So we conclude that there
are no arbitrary erase rule.

3. If x is the variable resolved in the inference step Fi ; Fi+1, then

V ars(Fi)− {x} ⊆ V ars(Fi+1) ⊆ V ars(Fi)

Moreover, occurrences of literals corresponding to variables other than x are
intact by the step. That is, for variable y 6= x, if y appers in Fi then y appears
in Fi+1 as well, and if ¬y appears in Fi then ¬y appears in Fi+1 as well.

Explanation Let A B
C

be the resolution rule applied in (i+1)th step such that
A,B ∈ Fi and C ∈ Fi+1. Clearly C = A ∪ B − {x,¬x}. Hence even after
erasing both the clauses A,B from Fi to get Fi+1 and assuming that variable

58

x belongs to none of the clauses in Fi other than clauses A and B, the only
differences in the variable set (i.e, V ars(Fi) and V ars(Fi+1)) is in the variable
x.

Moreover, clauses other than A,B of Fi remains intact in Fi+1 and hence their
literals remains intact as well. Also, literals other than ¬x, x which belongs to
the clauses A,B remains intact in Fi+1 via the clause C.

Now we are ready to prove part 4 of Theorem 5.3 and claim that the following
Theorem is sufficient to prove it.

Theorem 5.15. [7] For any circuit graph G we have V space(` PebG) ≥ BW -Peb(G).

Before proving Theorem 5.15, we first show how it implies part 4 of Theorem
5.3.

Ω
(n

log n

)
= BW -Peb(G̃n), by Theorem 5.10

≤ V space(` PebG̃n), by Theorem 5.15

≤ V space(π), ∀π `tl PebG̃n , by definition

≤ w(π)Cspace(π), from Lemma 4.5

Thus we have the desired result: for any tree-like resolution proof π of PebG̃n , we
have, w(π)Cspace(π) ≥ Ω(n

logn
).

And from Remark 4.12, for any tree-like resolution π `tl F , we have Cspace(π) ≤
log2 |π| + 1, Thus for any π `tl PebG̃n , we have, w(π)Cspace(π) ≤ w(π) log2 |π|,
which proofs the first inequality of part 4 as well.

Proof of Theorem 5.15
We will show that any essential space proof σ = F0, . . . , Fl of PebG is actually a
legal black-white pebbling µ = {C0, . . . , Cl} of G with |Ci| = |Bi| + |Wi| ≤ lit(Fi),
i.e, number of pebbles used in ith configuration is ≤ lit(Fi). This will proof the
required claim. Let σ = F0, . . . , Fl be an essential space proof of PebG. For F a
set of clauses define Positive(F) ⊆ V ars(F) to be the set of variables that have at
least one appearance as a positive literals in F . Now define the following pebbling
sequence in G

Ct(v) =


Black xv ∈ Positive(Ft)
White xv ∈ V ars(Ft)− Positive(Ft)
Null Otherwise

Clearly by its definition, number of pebbles in Ci ≤ lit(Fi) for each i. Therefore µ
is using no more than V space(σ) pebbles. Now we need to show that µ is a legal
black-white pebbling of G. As F0 = φ and Fl = {2} we have, C0 = φ = Cl. Since
PebG − (¬xs) is satisfiable, any resolution proof of PebG must use the sink axiom
¬xs, hence at some point in µ a pebble will be placed on s. Thus the only thing
remains to show is that Ct follows from Ct−1 using a valid black-white pebbling rule.
We will show this by induction on t = 0, . . . , l and split the proof into cases:

Inference Assume variable xv was resolved in the tth step (i.e, Ft−1 ; Ft). By
Observation 5.14, it is enough to focus only on xv. Clearly xv ∈ Bt−1 (i.e,
Ct−1(v) = Black). We have three cases:

59

Case (1) xv ∈ Positive(Ft). Then we are leaving black pebble on v as it is.

Case (2) xv ∈ V ars(Ft) − Positive(Ft). In this case we are removing black
pebble from v and placing white pebble. A valid step.

Case (3) xv /∈ V ars(Ft). We are removing black pebble. A valid step.

Thus all the steps are legal black-white pebbling steps, showing that the tran-
sition Ct−1 to Ct is legal.

Axiom Downloads Recall that there are three types of axioms in the formula
PebG. Let A be the axiom downloaded in the tth step. There are three cases:

Case (1) A is some source axiom. Let A = xv, for v a source vertex. As
A ∈ Ft, we have xv ∈ Positive(Ft). There are three cases: first case,
xv ∈ Positive(Ft−1), which implies, v ∈ Bt−1. In this case we are leaving
black pebble in v as it is. Second case, xv ∈ V ars(Ft−1)−Positive(Ft−1),
which implies, v ∈ Wt−1. In this case we are removing white pebble and
placing black pebble in v. This is a valid step as v is a source vertex. Last
case, xv /∈ V ars(Ft−1), which implies, v has no pebble in (t − 1)th step,
and we are placing a black pebble, a valid step as v is a source vertex.

Case (2) A = (¬xs), the sink axiom. There are three cases: first case, xs ∈
Positive(Ft−1), which implies, s ∈ Bt−1. In this case, xs ∈ Positive(Ft)
as well, and we are leaving black pebble as it is. A valid step. Second case,
xs ∈ V ars(Ft−1)−Positive(Ft−1), which implies, s ∈ Wt−1. In this case,
xs ∈ V ars(Ft) − Positive(Ft), and we are leaving white pebble as it is.
A valid step. Last case, xs /∈ V ars(Ft−1), which implies, s has no pebble
in (t − 1)th step. In this case, as A ∈ Ft, xs ∈ V ars(Ft) − Positive(Ft),
and we are placing a white pebble on s. A valid step.

Case (3) A is some pebbling axiom. Let A = (¬xu ∨¬xw ∨ xv). Look at the
vertex u. There are three cases: first case, xu ∈ Positive(Ft−1), which
implies, u ∈ Bt−1. In this case, xu ∈ Positive(Ft) as well. Leave the
black pebble as it is. Second case, xu ∈ V ars(Ft−1) − Positive(Ft−1),
which implies, u ∈ Wt−1. In this case, xu ∈ V ars(Ft) − Positive(Ft) as
well. And we are leaving white pebble as it is. A valid step. Last case,
xu /∈ V ars(Ft−1), which means, u has no pebble in (t − 1)th step. Now
as A ∈ Ft, we have xu ∈ V ars(Ft) − Positive(Ft). So we are placing a
white pebble on u. A valid step. Similarly, we repeat for vertex w. After
this steps, we are sure that both the vertex u and w has some pebble on
it. Now look at vertex v. As A ∈ Ft, we have xv ∈ Positive(Ft). There
are three cases: first case, xv ∈ Positive(Ft−1), which implies v ∈ Bt−1.
In this case, we are leaving black pebble on v as it is. Second case,
xv ∈ V ars(Ft−1)−Positive(Ft−1), which implies, v ∈ Wt−1. In this case,
we are removing white pebble from v and placing black pebble on v. This
is a valid step, since both of its children u,w, are already pebbled at this
moment. Last case, xv /∈ V ars(Ft−1). In this case, we are placing a black
pebble on v. A valid step, as both of its children are already pebbled.

60

So again all the steps are legal black-white pebbling steps, showing that the transi-
tion Ct−1 to Ct is legal. This completes the proof of Theorem 5.15.

As pointed out at the beginning of the Chapter, the paper [7] also contains tradeoff
results for general resolution. In particluar, Ben-Sasson [7] showed that there exists
contradictions that can not have small size and small clause space simultaneously:

Theorem 5.16. [7] For infinitely many integers n, there exists unsatisfiable CNF
formulas Fn of size (number of clauses) n such that:

1. w(` Fn) = O(1) and S(` Fn) = O(n). That is, there exists a resolution proof
of Fn with linear size and constant width simultaneously.

2. V space(` Fn) = Ω(n
logn

).

3. For any general resolution proof π of Fn we have,

Cspace(π) log |π| = Ω(
n

log n
).

61

Chapter 6

Conclusion

In this report we have seen resolution and tree-like resolution proof system. We have
defined three complexity measures for resolution: size, width and (clause\variable)
space. We have seen lower-bound results for resolution. In particular we saw in
Theorem 3.1 that any resolution proof for pigeonhole principle with n pigeons and
n − 1 holes, must have size at least 2n/20. We also saw width-size relationship in
Corollary 3.12. The main point of this result is, now to prove size lower bound it
is enough to prove width lower bound. We saw in Corollary 3.19 that there are
formulas with constant width, having polynomial size resolution proof but requires
exponential size in tree-like resolution proof system.

For tree-like resolution proofs we have seen relationship between size and clause
space. In particular, Theorem 4.11 shows that lower bound in clause space implies
lower bound in size for tree-like resolution system. We have seen combinatorial
characterization of resolution width defined by Atserias and Dalmau [5]. We have
also seen game characterization of tree-like clause space defined by Impagliazzo and
Pudlák [20].

At the end we have seen tradeoffs results for tree-like resolutions, proved by Ben-
Sasson [7]. In particular, we have seen in Theorem 5.3 that there exists unsatisfiable
CNF formulas (pebbling contradictions), such that it has constant width resolution
proof, tree-like resolution proof with linear size and constant space, but any tree-like
resolution proof π of pebbling contradiction must have w(π)Cspace(π) = Ω(n

logn
).

That is, optimizing both width and clause space simultaneously for pebbling con-
tradictions is not possible in tree-like resolution system.

62

Appendix A

Complexity Classes and Useful
Notations Used in the Report

Complexity Classes
We say that a machine decides a language L ∈ {0, 1}∗ if it computes the function

fL : {0, 1}∗ → {0, 1}, where fL(x) = 1⇔ x ∈ L.

The class DTime
Let T : N → N be some function. A language L is in DTime(T (n)) iff there is a
“deterministic” Turing machine that runs in time c · T (n) for some constant c > 0
and decides L.

The class P
P = ∪c≥1DTime(n

c).

The class NP
A language L ∈ {0, 1}∗ is in NP if there exists a polynomial p : N → N and a
polynomial time TM M (called verifier for L) such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|)s.t.M(x, u) = 1

If x ∈ L and u ∈ {0, 1}p(|x|) satisfy M(x, u) = 1, then we call u a certificate for x
(with respect to the language L and machine M).

The class coNP
If L ∈ {0, 1}∗ is a language, then we denote by L̄ the complement of L. That is
L̄ = {0, 1}∗\L.

coNP = {L : L̄ ∈ NP}

coNP , Alternative Definition
For every L ∈ {0, 1}∗, we say that L ∈ coNP if there exists a polynomial p : N→ N
and a polynomial time TM M such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∀u ∈ {0, 1}p(|x|),M(x, u) = 1

63

Notations
Let F be an unsatisfiable CNF formula, π a resolution proof of F and C be some
clause. Then we have the following notations:

Notations related to C and F

• width(C): number of literals in C.

• |F |: number of clauses in F .

• w(F) = max
C∈F
{width(C)}: width of a largest clause in F .

• lit(F) =
∑
C∈F
{width(C)}: sum of width of all clauses in F .

Notations related to π

• π ` F : π is a general resolution proof of F .

• π `tl F : π is a tree-like resolution proof of F .

• |π|: number of clauses in π.

• S(` F) = min
π`F
|π|: size of deriving F in general resolution proof.

• ST (` F) = min
π`tlF

|π|: size of deriving F in tree-like resolution proof.

• w(π) = max
C∈π
{width(C)}: width of a largest clause in π.

• w(` F) = min
π`F
{w(π)}: width of deriving F in general resolution.

• w(`tl F) = min
π`tlF
{w(π)}: width of deriving F in tree-like resolution.

• Gπ: proof graph (directed acyclic graph) corresponding to π.

• Cspace(π): (clause space of π) pebbling number of Gπ (for pebbling game see
Definition 4.2).

• Cspace(` F) = min
π`F
{pebbling number of Gπ}: clause space of deriving F in

general resolution.

• Cspace(`tl F) = min
π`tlF
{pebbling number of Gπ}: clause space of deriving F in

tree-like resolution.

• V space(π): (variable space of π) Vpebbling number of Gπ (for Vpebbling
game see discussions after Lemma 4.3).

• V space(` F) = min
π`F
{Vpebbling number of Gπ}: variable space of deriving F

in general resolution.

• V space(`tl F) = min
π`tlF
{Vpebbling number of Gπ}: variable space of deriving

F in tree-like resolution.

64

Bibliography

[1] Blake A. Canonical expressions in boolean algebra. PhD. thesis, University of
Chicago, 1937.

[2] Cook S. A. and Reckhow A. R. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1977.

[3] Robinson J. A. A machine oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

[4] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002.

[5] A. Atserias and V. Dalmau. A combinatorial characterization of resolution
width. 18th IEEE Conference on Computational Complexity, pages 239–247,
2003.

[6] Paul Beam. Proof complexity. IAS/Park City Mathematics Institute, Volume
10, Computational Complexity Theory, 2000.

[7] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC’02), pages 457–464,
May 2002.

[8] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separa-
tion of treelike and general resolution. Combinatorica, 24(4):585–603, Septem-
ber 2004.

[9] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow − resolution made
simple. In Proceedings of the Thirty first Annual ACM Symposium on Theory
of Computing, Atlanta, GA, pages 517–526, May 1999.

[10] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of
tree-like resolution size. Electronic Colloquium on Computational Complexity
(ECCC), 19, 2012.

[11] Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for
resolution and polynomial calculus. In Proceedings 40th Annual Symposium on
Foundations of Computer Science, New York, NY, IEEE, October 1999.

[12] J. L. Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001.

65

[13] J. L. Esteban and Jacobo Torán. Combinatorial characterization of tree-like
space. Information Processing Letters, 87(6):295–300, 2003.

[14] Zvi. Galil. On resolution with clauses of bounded size. SIAM Journal on
Computing, 6(3):444–459, 1977.

[15] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on
graphs. Technical Report STAN-CS-78-661, Stanford University, 1978.

[16] Armin Haken. The intractability of resolution. Theoretical Computer Science,
39(2-3):297–308, August 1985.

[17] P. G. Kolaitis and M. Y. Vardi. On the expressive power of datalog: tools and
a case study. Journal of Computer and System Sciences, 51:110–134, 1995.

[18] Jan Krajiček. Propositional proof complexity I. Mathematical Institute, Aca-
demic of Sciences of the Czech Republic Praha, 2003.

[19] Davis M. and Putnam H. A computing procedure for quatification theory.
Journal of the ACM, 7(3):210–215, 1960.

[20] P. Pudlák and R. Impagliazzo. A lower bound for DLL algorithms for k-SAT.
Proc.11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 128–
136, 2000.

[21] U. Schoning. Logic for computer scientist. Birkhauser, 1989.

[22] Jacobo Torán. Space and width in propositional resolution. Bulletin of the
European Association for Theoretical Computer Science (EATCS) 83, 2004.

[23] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th
International Workshop on Computer Science Logic (CSL ’99), Volume 1683
of Lecture Notes in Computer Science, pages 362–373, Springer 1999.

66

	Introduction
	Proof Systems
	Organization of the Report

	Resolution
	Definitions
	Completeness and Soundness of Resolution
	Tree-like Resolution
	Resolution Proofs with Weakening Rule
	Complexity Measure

	Lower Bounds for Resolution
	The Pigeonhole Principle
	Encoding the Pigeonhole Principle as an Unsatisfiable CNF Formula
	Inductive Proof of the Pigeonhole Principle
	Lower Bound for General Resolution: PHPn-1n

	Width of a Resolution Proof
	Width and Tree-like Size
	Width and Size

	Tree-like vs General Resolution Proofs

	Space and Width of Resolution
	Definitions
	Clause Space and Tree-like Size
	Combinatorial Characterization of Resolution Width
	Width vs Space
	Combinatorial Characterization of Tree-like Resolution Clause Space

	Size-Width Tradeoffs for Tree-like Resolution
	Conclusion
	Complexity Classes and Useful Notations Used in the Report
	Bibliography

