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ABSTRACT

Tutte-polynomial of a graph is a 2-variable polynomial of significant importance in graph

theory. When evaluated at ((1 − k), 0) it gives the number of k-colorings of the graph.

Hence it can give it’s chromatic number. We propose an algorithm to solve the problem

for general graph in time O((1.18 + o(1))ndn), where n is the number of vertices and d

is the average degree of the graph. A long standing algorithm by Tsukiyama et.al. [15]

enumerates all maximal independent sets (MIS) of a graph in O(nmN ) time and O(n2)

space, where n is the number of vertices, m is the number of edges, and N is the number

of maximal independent sets. We propose a simplified implementation of Tsukiyama’s

algorithm without changing it’s time and space complexity.

Constraint Satisfaction Problem (CSP) involves n variables {v1, v2 . . . , vn} and m con-

straints {c1, c2, . . . , cm}. Associated with each variable is a list of colors and each constraint

is a list of (variable,color) pairs. A solution of an instance of CSP is an assignment of

one color to each variable from it’s list such that for each ci, ∃(v,X) ∈ ci such that color

X is not assigned to v. An (a,b)-CSP problem refers to a CSP problem in which each

vertex has at most ‘a’ colors in it’s color list and each constraint involves at most ‘b’

(variable,color) pairs. We devise a randomized algorithm for solving (3,3)-CSP along the

lines of the randomized algorithm for (3,2)-CSP [2]. Unfortunately it’s expected complex-

ity turns out to be worse than that of the trivial algorithm. We also device an improved

proof for the bound on the number of maximal independent sets of a graph [6] of size at

most k. At last we identify a flaw in the partition algorithm of planar graphs proposed

by Xuding Zhu [17].
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Chapter 1

Introduction

Graph coloring is a well known NP-complete problem. Finding exact solution to graph

coloring problem is desirable in many application. Although exact algorithms for NP-

complete problems have exponential time complexity in the worst case, but better per-

forming algorithms are still a challenge in this domain. In this thesis we concentrate

ourselves to exact algorithms for graph coloring and related problems.

Definition 1. A coloring of a graph is a mapping c : V → {1, 2, . . . } from vertices to

colors 1, 2, . . . such that no neighbours have the same color. A coloring uses k colors is

called a k-coloring. The smallest number of colors needed to color a graph G is called its

chromatic number, denoted by χ(G).

The problems related to coloring are:

(i) To determine χ(G) of a graph G.

(ii) To compute a χ(G)-coloring of G.

Other related hard problems are:

(i) Computing maximum independent set of a graph G and,

(ii) Enumerating all maximal independent sets of a graph G.

1.1 Tutte-Polynomial

George David Birkhoff introduced the chromatic polynomial in 1912, defining it only for

planar graphs, in an attempt to prove the four color theorem. The chromatic polynomial
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is a function P (G,λ), which is the number of ways a graph G can be colored using no

more than λ colors. As the name indicates, for a given G, P (G,λ) is indeed a polynomial

in λ. The chromatic polynomial χ(G) is the smallest positive integer that is not a root of

the chromatic polynomial, χ(G) = min{λ|P (G,λ) > 0}.

Tutte-polynomial, T (G, x, y), is a two variable polynomial which plays an important

role in graph coloring and flow networks. W.T.Tutte in 1954 [16] conceived this polynomial

by generalizing chromatic polynomial.

For a connected multigraph G = (V,E), it is defined as follow: Fix an ordering on the

edge set e1, e2, . . . , em of G. Consider any spanning tree T ′ of G. Suppose edge ej ∈ T ′.

Then T ′ − ej has two components, say C1 and C2. We say ej is internally active in T ′ if,

each edge ek other than ej , which has one end a vertex of C1 and other end a vertex of

C2 satisfies k < j.

Now, suppose ej /∈ T ′. Denote it’s end point by v1 and v2. Consider the unique path

P ∈ T ′ from v1 to v2. We say ej is externally active in T ′ if, each edge ek ∈ P , satisfies

k < j. Let us denote r(T ′) and s(T ′) as, the number of edges of G which are internally

and externally active respectively in T ′ . Then Tutte-polynomial is defined as follows:

T (G, x, y) =


1 if G is has no edge∑
T ′

xr(T ′)ys(T ′) Otherwise

The summation is over all spanning trees of G. Tutte-polynomial of an arbitrary graph is

the product of the Tutte-polynomials of it’s connected components.

In his paper, he has given a simple equation for finding the chromatic polynomial of a

graph from Tutte-polynomial.

P (G,λ) = (−1)|V |−C(G)λC(G)T (G, 1− λ, 0),

where, C(G) is the number of connected components of G.

In chapter 2, We propose a simple algorithm for computing the Tutte-polynomial of a

graph in time O((1.18 + o(1))ndn), where n is the number of vertices in the graph and d

is the average degree of the graph.
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1.2 Some Exact Algorithms For Graph Coloring

Graph coloring has been studied as an algorithmic problem since the early 1970s. The

chromatic number problem is one of Karps 21 NP-complete problems [10]. N. Christofides

in his paper [4], showed that if a graph is k-colorable then, there is a partition of it’s vertex

set into k independent subsets, where at least one of the independent subsets is maximal.

It follows that if G = (V,E) is nonempty then, there exists a maximal independent set

(MIS) I of G, such that χ(G) = 1 + χ(G\I).

Let I(G) be the set of all MIS of G. There are finite number of (maximal) independent

sets I of any graph G. Hence, we obtain the following recurrence relation:

χ(G) =


1 + min

I∈I(G)
{χ(G\I)} if G is nonempty

0 if G is empty

Both Christofides (1971) [4] and E.L.Lawler (1976) [13] uses the same recurrence relation

to compute the chromatic number of a graph. There algorithm generates all MIS of a graph

as a bi-product. Lawler’s algorithm for computing the chromatic number of a graph G is

as follows:

Lawler’s (1976) Algorithm

Given a graph G = (V,E), let |V | = n and |E| = m. We fix an ordering on vertex set

v0, v1, . . . , vn−1. Define P(V ) as the power set of V . Map each S ∈ P(V ) in one-to-one

correspondence with the integers 0, 1, . . . , 2n−1, as S ↔
∑
vi∈S

2i. Subsets of vertices also

correspond to induced subgraphs of G, in which we include all edges between vertices

in the subset. It is clear that, if S1 ⊂ S2 than the number corresponding to S1 is less

than that of S2. Let integer s corresponds to the set S. In his algorithm, he uses an

array X, indexed by 2n subsets of G, which will hold the chromatic number of subsets of

G. The Lawler’s (1976) algorithm for computing chromatic number of graph is shown in

Algorithm 1.

Analysis Of Algorithm 1

Let χ(S′) denote the chromatic number of the subgraph induced on S′. Suppose for some

fixed S′ ⊆ V , we have already found χ(S′′), for all S′′ ⊂ S′. Then the time required to

compute χ(S′) is proportional to the number of maximal independent sets of the subgraphs

induced on S′, plus the time required to generate them. Let |S′| = r. We know that, the
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input : A graph G = (V,E)
output: Chromatic number, χ(G) of input graph G

let X be an array indexed from 0 to 2n − 1;
X[0] = 0;/* X[0] contains chromatic number of empty set */
for s = 0 to 2n − 1 do

/* number s corresponds to the subset S of V and X[s] will hold
the chromatic number, χ(S), of the subgraph induced on S. */

X[s] =∞ ;
for all maximal independent set I of G do

X[s] = min(X[s], X[s′] + 1); /* where, s′ is the number
corresponding to the subset S\I of V */

end
end
return X[v];/* v is the number corresponding to the set V */

Algorithm 1: Chromatic-Number(G): Lawler’s (1976) Algorithm

number of maximal independent sets of a graph on r vertex is at most 3r/3 [9] and there

exists an algorithm for generating all maximal independent sets in time O(mnN ), where

n,m and N are the number of vertices, edges and maximal independent sets of a graph

[15]. Thus the time required to compute χ(S′) is bounded by O(mr3r/3). Summing over

all S′ ⊆ V and invoking binomial theorem, it is clear that the worst case running time of

the algorithm is bounded by
n∑

r=0

(
n

r

)
mr3r/3 < mn

n∑
r=0

(
n

r

)
3r/3 = mn(1 + 31/3)n = O(2.4423n).

David Eppstein (2003) in [6] provides the first improvement to Lawler’s algorithm,

using the following idea: Firstly, instead of removing a maximal independent set from each

induced subgraph S, and computing the chromatic number of S from that of resulting

subset, we add a maximal independent set I of V \S to S and compute the chromatic

number of the resulting superset S ∪ I from that of S. This way of filling the array

X allows us to constrain the size of the maximal independent sets due to the following

Lemma:

Lemma 1. [6] Let M be a maximal k + 1 chromatic subset of G = (V,E), and let (S, I)

be a partition of M into a k-chromatic subset S and an independent subset I, maximizing

the cardinality of S among all such partitions. Then I is a maximal independent subset

of V \S with |I| ≤ |S|/k, and S is a maximal k-chromatic subset of G.

David Eppstein’s chromatic number algorithm, based on the above Lemma is shown
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in Algorithm 2.

input : A graph G = (V,E)
output: Chromatic number, χ(G) of input graph G

let X be an array indexed from 0 to 2n − 1;
/* array X will (eventually) hold the chromatic number of certain of

the subsets including V itself */
for s = 0 to 2n − 1 do

/* number s corresponds to the subset S of V */
if χ(S) ≤ 3 then

X[s] = χ(S);
else

X[s] =∞;
end

end
for s = 0 to 2n − 1 do

if 3 ≤ X[s] <∞ then
for all maximal independent sets I of V \S of size at most |S|/X[s] do

X[s′] = min(X[s′], X[s] + 1); /* where, s′ is the number
corresponding to the set S ∪ I */

end
end

end
return X[v];/* v is the number corresponding to the set V */

Algorithm 2: Chromatic-Number(G): Eppstein’s (2003) algorithm

Analyzing The Time Complexity Of Algorithm 2

First, we consider the time spent in initializing X. We know that, one can solve 3-coloring

problem in time O(1.3289n) [2]. Since we perform a 3-coloring algorithm on each subset

of G, this time is,∑
S⊂V

O(1.3289|S|) = O(
n∑

i=0

(
n

i

)
1.3289i) = O(2.3289n).

Now, we need to bound the time of the main loop of the Algorithm 2. In the same paper

[6] David Eppstein’s proved that, for any n-vertex graph G and a non-negative integer

parameter k, there are at most 34k−n4n−3k maximal independent sets I ∈ G with |I| ≤ k,

and that all such sets can be listed in time O(34k−n4n−3k). Thus we can generate all

maximal independent sets I of V \S in time O(34k−n4n−3k). In the worst case, X[s] = 3

and we can limit the size of the generated maximal independent sets to k = |S|/3. Thus,

the total time of main loop can be bounded as∑
S⊂V

O
(

34
|S|
3
−|V \S|4|V \S|−3

|S|
3

)
= O

( n∑
i=0

(
n

i

)
3

7i
3
−n4n−2i

)
= O

(
(
4
3

+
34/3

4
)n
)

Thus the total time of Algorithm 2 can be bounded as O(2.3289n+2.4150n) = O(2.4150n).
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In chapter 4, we simplify a proof of David Eppstein’s paper [6].

Richard Beigel and David Eppstein [2] solved the problem of 3-coloring of a 3-colorable

graph in time O(1.3289n) based on a constrain satisfaction (CSP) formulation of the

problem. In CSP, we are given a collection of n variables. Associated with each variable is

a list of colors. We are also given a collection of m constraints. Each constraint is a tuple of

variables along with a color for each variable. A constraint is satisfied by a coloring if not

every variable in the tuple is colored in the way specified by the constraint. In the (a,b)-

CSP problem, each variable has at most ‘a’ colors in it’s color list and each constraint

involves at most ‘b’ (variable,color) pairs. 3-coloring is a special case of (3, 2)-CSP. In

chapter 5, we introduce a randomized algorithm for solving (3, 3)-CSP problem.

In chapter 6, we consider the following two-person coloring game: Let G = (V,E) be a

graph and X be a set of colors. Alice and Bob take turns in playing the game. Each player

takes a turn to color an uncolored vertex from the color set X subject to the condition

that adjacent vertices must be colored with distinct colors. Alice will take the first turn.

The game ends if no more vertex can be colored: either because all vertices are colored, in

this case Alice is the winner, or because no color is available to color uncolored vertices,

in which case Bob is the winner. The game chromatic number of G, denoted by χg(G), is

the least cardinality of the color set X for which Alice has a winning strategy. We review

Xuding Zhu’s solution for planar graph [17] and point out a flaw in it.



Chapter 2

Tutte-Polynomial

We propose a simple algorithm for computing the Tutte-polynomial of a graph in time

O((1.18 + o(1))ndn), where n is the number of vertices and d is the average degree of the

graph.

2.1 Introduction

Tutte-polynomial of a graph is a 2-variable polynomial of significant importance in graph

theory. It can be evaluated at particular point (x, y) to give numerical graph invariant,

including the number of spanning trees and the number of forests. It also generalizes both

chromatic polynomial and flow polynomial of a graph [16]. In 2008 Björklund et.al. [1]

shows that the Tutte-polynomial of an n-vertex graph G can be computed

(a) in time and space σ(G)nO(1);

(b) in time 3nnO(1) and polynomial space; and

(c) in time 3n−s2snO(1) and space 2snO(1) for any integer s, 0 ≤ s ≤ n

where, σ(G) is the number of vertex subsets that induce a connected subgraph. For

bounded-degree graphs it is known that σ(G) = O((2 − ε)n). There algorithm is consid-

erably non-trivial. It involves computing the value of the polynomial at a fixed point and

then performing interpolation to determine the coefficients of the Tutte-polynomial. There

are a few heuristics algorithm in the literature for computing the Tutte-polynomial. For

example, [7, 5]. In this chapter we show, that the problem can be solved by an algorithm
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with worst case running time of O((1.18 + o(1))ndn) where, n is the number of vertices

and d is the average degree of the graph.

Tutte-polynomial, for any connected multigraph G = (V,E), T (G, x, y) is defined as

follows [16]: Fix an ordering on the edge set e1, e2, . . . , em of G. Consider any spanning

tree T ′ of G. Suppose edge ej ∈ T ′. Then T ′ − ej has two components, say C1 and C2.

We say ej is internally active in T ′ if, each edge ek other than ej , which has one end a

vertex of C1 and other end a vertex of C2 satisfies k < j.

Now, suppose ej /∈ T ′. Denote it’s end point by v1 and v2. Consider the unique path

P ∈ T ′ from v1 to v2. We say ej is externally active in T ′ if, each edge ek ∈ P , satisfies

k < j. Let us denote r(T ′) and s(T ′) as, the number of edges of G which are internally

and externally active respectively in T ′ . Then Tutte-polynomial is defined as follows:

T (G, x, y) =


1 if G is has no edge∑
T ′

xr(T ′)ys(T ′) Otherwise

The summation is over all spanning trees of G. Tutte-polynomial of an arbitrary graph is

the product of the Tutte-polynomials of it’s connected components.

It is shown that an equivalent recursive definition of T (G, x, y), for a connected multigraph

is as follows:

T (G, x, y) =



1 if E =∅

x.T (G/e, x, y) if e ∈ E is a bridge

y.T (G− e, x, y) if e ∈ E is a loop

T (G/e, x, y) + T (G− e, x, y) if e ∈ E is neither a loop nor a bridge

where G/e and G−e denote the resulting graphs respectively after contraction and deletion

of the edge e.

2.2 Algorithm For Computing Tutte-Polynomial

In this section we first give some definitions and Lemmas which leads to our final algorithm.

We assume that the given graph is a loop-free multigraph. The case of graphs with loop

can be trivially handled as suggested by the recursive definition of Tutte-polynomial.
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Definition 2. Let G = (V,E) be a connected loop-free multigraph. Let band buv denotes

the set of edges with end-points u and v. The size of buv refers to its cardinality. If G−buv

has one more component than in G, then buv will be called cut-band. The band-degree of

a vertex is the number of bands incident upon it.

We will denote y0 + y1 + · · · + yk−1 by fk(y) to simplify the expressions. Following

Lemma is a direct consequence of the recursive definition of T (G, x, y).

Lemma 2. Let G be a connected multi-graph and b be a band of size k in it. If b is not a

cut-band, then T (G, x, y) = fk(y)T (G/b, x, y) + T (G− b, x, y). If b is a cut-band, then

T (G, x, y) = (x− 1 + fk(y))T (G/b, x, y).

Corollary 1. Let G be a connected multigraph without loops and u be a vertex in it. Let

b1, . . . , br be the bands incident upon u and which are connected to one of the components

of G− u (so r is equal to the band-degree of u if it is not a cut-vertex.) Let k1, . . . , kr be

their sizes respectively. Then

T (G, x, y) =
r−1∑
i=1

fki
(y)T ((G−b1−· · ·−bi−1)/bi, x, y)+(x−1+fkr(y))T ((G−b1−· · ·−br−1)/br, x, y)

Since G is connected and loop-free, each graph on the right hand side of the expression is

also connected and loop-free.

From the definition, the Tutte-polynomial of a graph is the product of the Tutte-

polynomials of its connected components. Further, if e1, . . . , ek are loops in G, then

T (G, x, y) = yk.T (G− e1 − · · · − ek, x, y). Hence it is sufficient to devise an algorithm to

compute the Tutte-polynomial of a connected loop-free multigraph.

The right-hand-side of the expression in the above corollary involves the Tutte-polynomials

of connected loop-free multigraphs with one fewer vertex than in G. Hence this leads to

a simple algorithm to compute the Tutte-polynomial shown in Algorithm 3.

2.3 Analysis

Let n be the number of vertices and b be the number of bands in the input connected

loop-free multigraph G = (V,E). Then b ≤ m = |E| and the number of recursive calls

in algorithm TCLf only depends on n and b. Let g(n, b) denote an upper-bound to the
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Data: A connected multigraph without loops
Result: Tutte-polynomial of the input graph
if n = 1 then

return 1
end
else

select a minimum band-degree vertex u;
/* let bands b1, . . . , br be incident on u and connected to one

component of G− u and |bi| = ki ∀i */

return
r−1∑
i=1

fki
(y) ∗ TCLf((G− b1 − · · · − bi−1)/bi, x, y) + (x− 1 + fkr(y)) ∗

TCLf((G− b1 − · · · − br−1)/br, x, y);
end

Algorithm 3: TCLf(G, x, y):Computation of Tutte-polynomial of a connected loop-
free multigraph

number of recursive calls. Before each call we have to compute the input graph which

results after the deletion and contraction of some of the edges. This requires O(m + n)

time. Hence the time complexity of the algorithm is O((m + n + 1)g(n,m) + 1). Hence

our objective is to find a bound for g(n, b). From the algorithm we see that the recurrence

relation satisfied by the function g is

g(n.b) ≤
r∑

i=1

g(n− 1, b− i).

If the input multigraph is a multi-tree (i.e., the bands do not form any cycle), then

r = 1 in each iteration of TCLf algorithm. Hence g(n, b) = n − 1 for this case. It is also

easy to see that g(n, n) ≤ n(n − 1)/2 since a connected graph with b = n is a cycle with

some trees incident upon it.

Lemma 3. g(n, b) = O(2n
(

b
min{n,b}

)
) = O(2n

(
m

min{n,m}
)
).

Proof. We prove the claim by induction on n. Since G is connected b ≥ n − 1. In

case b = n − 1, the claim is trivially valid since, g(n, n − 1) ≤ n − 1. If b ≥ n, then

g(n, b) ≤
∑r

i=1 g(n−1, b− i) ≤ r.2n−1.
(

b−1
n−1

)
. Since r is at most the minimum band-degree

in the graph so r ≤ 2b/n. So g(n, b) ≤ 2n
(

b
n

)
.

Hence the time complexity of the algorithm is O
(
(m + n + 1)2n

(
b

min{b,n}
)

+ 1
)

=

O((m+ n)2n
(

m
min{m,n}

)
.

In the following Lemma we give a tighter bound for the number of recursive calls.
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Lemma 4. g(n, b) = O((1.18 + o(1))n.dn) where d = 2b
n .

Proof. We will show that g(n, b) ≤ (e− e−1 + o(1))n( b
n)n by induction on n. For the base

case, when n = 1, the left hand side becomes zero, since the algorithm has zero recursive

call, and 0 ≤ (1.18 + o(1))101 = 0. This proves the base case. Otherwise, from induction

hypothesis and the fact that r ≤ b2b/nc

g(n, b) ≤ α

(n− 1)n−1
[(b− 1)n−1 + · · ·+ (b− bdc)n−1], where α = (e− e−1 + o(1))n−1

so,

g(n, b) ≤ α

(n− 1)n−1

∫ b

b−bdc
xn−1dx ≤ α

(n− 1)n−1

∫ b

b−d
xn−1dx

For b− d/2 ≤ x ≤ b, (x−d/2)n−1

xn−1 = (1− d
2x)n−1 ≤ (1− d

2b)n−1 = (1− 1
n)n−1. So,

g(n, b) ≤ α

(n− 1)n−1
· (1 + (1− 1

n
)n−1)

∫ b

b−d/2
xn−1dx

=
α

(n− 1)n−1
· (1 + (1− 1

n
)n−1) ·

bn − (b− b
n)n

n

=
α

(n− 1)n−1
· (1 + (1− 1

n
)n−1) · (1− (1− 1

n
)n) · b

n

n

= α ·
(

(
n

n− 1
)n−1 − (

n− 1
n

)n +
1
n

)
· b

n

nn

The expression ( n
n−1)n−1− (n−1

n )n is bounded above by (e− e−1), see appendix A. Hence,

g(n, b) ≤ (e− e−1 + o(1))n−1 · (e− e−1 +
1
n

) · ( b
n

)n

Corollary 2. The time complexity of the algorithm TCLf is O((1.18 + o(1))n.dn.p) where

d denotes the average degree of the graph and p denotes a linear polynomial in n,m.
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Chapter 3

Enumerating All Maximal

Independent Sets Of A Graph

A long standing algorithm by Tsukiyama et.al. [15] enumerates all maximal independent

sets (MIS) of a graph in O(nmN ) time and O(n2) space, where n is the number of

vertices, m is the number of edges, and N is the number of maximal independent sets.

In this chapter we present a simplified implementation of Tsukiyama’s algorithm without

changing it’s time and space complexity.

3.1 Tsukiyama et.al [1977] Algorithm

Given a graph G = (V,E), for any v ∈ V , let ΓG(v) be the neighbours of v in G,

i.e., ΓG(v) = {w ∈ V |(v, w) ∈ E}. Fix an arbitrary ordering on the vertex set V as

{x1, x2, ..., xn}. Let Vi = {x1, x2, ..., xi}. By Gi we denote the induced graph on Vi. Define

Mi as sets of all maximal independent sets (MIS) of Gi. For simplicity, let Γi(v) = ΓGi(v)

and Ai = Γi(xi).

We will first present the algorithm of Tsukiyama et.al. with a some modifications in

the terminology and a few of their results for completeness. Subsequently we will describe

our implementation.

3.1.1 Basic Algorithm

Their algorithm is based on two results which we will quote without proof. Let M ∈Mi−1.

A condition α for M is defined as follows
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α(M): ∀xk ∈ (M ∩Ai), ∀xj ∈ (Γi−1(xk)−Ai), Γi−1(xj) ∩ (M −Ai) 6= ∅.

Lemma 5. [15] For each i, Mi =M′i ∪M′′i ∪M′′′i

where M′i = {M ∪ {xi}|M ∈Mi−1, Ai ∩M = ∅},

M′′i = {M |M ∈Mi−1, Ai ∩M 6= ∅},

M′′′i = {M ∪ {xi} −Ai|M ∈Mi−1,M ∩Ai 6= ∅, α(M) = true}.

This lemma gives the following simple algorithm to generate all the maximal indepen-

dent sets.

M0 = {∅};
for i = 1 to n do
Mi := ∅;
for each M ∈Mi−1 do

if M ∩Ai = ∅ then
insert M ∪ {xi} in Mi; /* a member of M′ */

end
else

insert M in Mi; /* a member of M′′ */
if M satisfies α then

insert M ∪ {xi} −Ai in Mi; /* a member of M′′′ */
end

end
end

end
return Mn;

Algorithm 4: BASIC-MIS(G):Basic Algorithm For Enumerating All MIS

3.1.2 Duplication Problem

From Lemma 5, it is easy to see that the above algorithm correctly generates all the max-

imal independent sets of the graph. But unfortunately multiple copies of some maximal

independent sets may be generated because for each member M ′ of M′′′i there may be

several members M of Mi−1 such that M ′ = M ∪ {xi} − Ai. This multiplicity can se-

riously damage the time complexity of this algorithm. We define a partition of the set

{M ∈ Mi−1|M ∩ Ai 6= ∅, α(M)holds} putting all the sets M in the same class for which

M ∪ {xi} −Ai is same.

Tsukiyama et.al. [15] solved the duplication problem by proposing a condition β and

showing that this condition is satisfied by exactly one member of each partition class.
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Select and fix an arbitrary ordering on the members of Ai, say Ai = {y1, y2, ..., yp}, and

let us denote a contiguous subseqence {yk, yk+1, ..., yh−1, yh} by {yj}hj=k. Let M ∈ Mi−1

such that M ∩Ai 6= ∅. A condition β for M is defined as follows

β(M): ∀yk ∈M ∩Ai; ∀z ∈ (Γi−1(yk) ∩Ai − {yj}k−1
j=1), Γi−1(z) ∩ (M − {yj}kj=1) 6= ∅.

Lemma 6. [15] For each M ′ ∈M′′′i there exists a unique M ∈Mi−1 such that M satisfies

β and M ′ = M ∪ {xi} −Ai.

The algorithm can be modified as Algorithm 5 where no maximal independent set in

any Mi is generated more than once.

M0 = {∅};
for i = 1 to n do
Mi := ∅;
for each M ∈Mi−1 do

if M ∩Ai = ∅ then
insert M ∪ {xi} in Mi; /* a member of M′ */

end
else

insert M in Mi; /* a member of M′′ */
if M satisfies α&β then

insert M ∪ {xi} −Ai in Mi; /* a member of M′′′ */
end

end
end

end
return Mn;

Algorithm 5: MIS(G):Algorithm For Enumerating All MIS Without Duplication

3.1.3 Improving Space Complexity

Algorithm 5 stores all sets ofMi−1 and computes entireMi from them. In the worst case

the size of these sets grow to be N , which is the number of maximal independent sets in

the graph. Hence the space complexity can grow to be O(n.N ) if we loosely assume that

each maximal independent set is of size O(n). But if we look closely, then it turns out

that such a huge storage space is not required.

Each member M ofMi−1 generates one member M ′ ofMi either as a member ofM′i

or ofM′′i depending upon whether Ai ∩M is empty or not. Let us pretend that M ′ is the

continuation of M , which results from processing M at stage i. Hence we see that any set

in Mi evolves to a set in Mn after being processed at stages i + 1, i + 2, . . . . Once in a
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while a set also generates an additional set, which we refer as the member of M′′′i . In a

modified algorithm we shall use a stack. We will continue to process a set until it reaches

the last stage, becomes a member of Mn. On the way if an extra set M ′′′ is created,

then we shall place (M ′′′, i) in the stack indicating that M ′′′ is maximal independent set

in Gi. After the current set reaches its final stage we shall output it and pick a set from

the stack which belongs to an intermediate stage and then again carry on with it till the

last stage. The process ends when the current set reaches the final stage and the stack

becomes empty. The space efficient version is given in Algorithm 6 where S is the stack

referred above.

input : A graph G = (V,E)
output: Outputs all maximal independent sets of the input graph

1 M := ∅; i := 0;
2 while S 6= ∅ or i < n do
3 if i = n then {Output M ; (M, i) := Pop(S) };
4 i := i+ 1;
5 Ai := Γi(xi);
6 if M ∩Ai = ∅ then
7 M := M ∪ {xi}; /* now M is a member of M′i */
8 end
9 else

/* in this case M is a member of M′′i */
10 if M satisfies α and β then
11 M ′ := M ∪ {xi} −Ai;
12 Push(S, (M ′, i));

/* newly created set M ′ is a member of M′′′i */

13 end
14 end
15 end
16 Output(M);

Algorithm 6: MIS-SPACE(G): Space Efficient Version Of MIS Algorithm

It is easy to see that in Algorithm 6 each set in the stack has distinct index, higher in

the stack has higher index. Hence there cannot be more than n independent sets in the

memory. This leads to the space complexity of O(n2).

Thus far we described the basic algorithm proposed by Tsukiyama et.al. [15] without

the implementation details. In the following section we propose a new implementation.
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3.1.4 Improved Implementation

Now we present the details of the new implementation which tests conditions α, β effi-

ciently. There are two structures to store the input graph. The first one is the adjacency

matrix N where N [j, k] = 1 if (xj , xk) is an edge; 0 otherwise. The second is the array

J of pointers where J [i] points to a linked-list of neighbors of xi (in graph G) which are

sorted in increasing order of the indices.

The tuple (M, i) in Algorithm 6 is replaced by (m, Count, i), where

(i) m is an array of size n representing set M as its characteristic vector, i.e., {xj |m[j] =

1} = M ;

(ii) Count is an array of size n where Count[j] = |Γi−1(xj) ∩M |.

The stack to store the tuple is S. In addition, we use ‘TCount’ an array of size n to

temporarily store some elements of Count during the computations. Algorithm 7 gives

the final algorithm with full implementation details.

3.1.5 Correctness And Complexity

Now we will show that Algorithm 7 is correct and then determine it complexity.

In this algorithm we use the original indices of the vertices to linearly order set Ai to

test condition β, i.e., if Ai = {xi1 , xi2 , . . . } where i1 < i2 < . . . , then y1 = xi1 , y2 = xi2 , . . . .

Algorithm 7 is evolved from Algorithm 6 so we only need to explain how the two

conditions are computed and how the new set and its Count array are computed when

the conditions are found to be true. To begin, assume that some how the conditions are

found to be true. Then by copying m into a new array m′ and setting m′[i] = 1 and

m′[k] := 0 ∀k ∈ J [i]&k < i, we get the new independent set (the member of M′′′i ). Now

we describe how the conditions α and β are tested in lines 13 to 22. We store the Count

value of those vertices which we need in this test, namely the second neighbourhood of xi

in Gi: Algorithm 8 is an abstraction of lines 16 to 22 of Algorithm 7 .

Let xk = ys ∈ Γi(xi) ∩M , and for some xj ∈ Γi−1(xk), at condition-check-point (see

Algorithm 8) the value of TCount[j] is the number of neighbors of xj in M −{y1, . . . , ys}

since we have already deleted as many 1’s as there are neighbors of xj in M ∩{y1, . . . , ys}.

If ys is the highest index neighbor of xi in Ai ∩ M then both the conditions α and β
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Data: Adjacency matrix N of the graph and array J of pointers where J [i] points
to a linked-list of neighbours of xi (in graph G) which is sorted in increasing
order of the indices

Result: Outputs all maximal independent sets of the input graph
/* Tuple (M, i) of Algorithm 6 is replaced by (m, Count, i) where, m is an array of

size n representing set M as m[j] = 1 if xj ∈M, Otherwise m[j] = 0 and Count is

an array of size n where Count[j] = |Γi−1(xj) ∩M | */
/* Lines 1 to 4 correspond to lines 1 to 4 of Algorithm 6 */

1 m := Count := TCount := [0, 0 . . . , 0]; i := 0;
2 while S 6= ∅ or i < n do
3 if i = n then { Output m; (m, Count, i) := Pop(S) };
4 i := i+ 1;
5 Afree := true;

/* flag Afree = false means M ∩Ai 6= ∅ */
/* Line 6 and 7 of Algorithm 6 is executed as line 6 to 9 */

6 for xk ∈ J [xi]& k < i do { if m[k] = 1 then Afree := false };
7 if Afree then
8 m[i] := 1;
9 for xk ∈ J [xi] & k < i do {Count[k] := Count[k] + 1;}

10 end
11 else
12 condition := true;

/* Flag condition = true means α(M) and β(M) is true */
/* Conditions α and β are tested in lines 13 to 23 */
/* x-indices are used to order the elements of Ai for condition β */
/* In line 13 we copy Count values of Γi−1(Γi(xi)) into TCount */

13 for xk ∈ J [i]&k < i do
14 for xj ∈ J [k]&j < i do TCount[j] := Count[j];
15 end
16 for xk ∈ J [i]&k < i&m[k] = 1 do
17 for xj ∈ J [k]&j < i do
18 TCount[j] := TCount[j]− 1;
19 if N [i, j] = 0&TCount[j] = 0 then condition := false;
20 if N [i, j] = 1&j > k&TCount[j] = 0 then condition := false;
21 end
22 end

/* Lines 10-12 of Algorithm 6 is executed in line 23 to 30 */
23 if condition then
24 Count′ := Count;
25 for xk ∈ J [i]&k < i do
26 for xj ∈ J [k]&j < i do {Count′[j] := TCount[j];TCount[j] := 0; }
27 end
28 for xk ∈ J [xi] & k < i do Count′[k] := Count′[k] + 1;
29 m′ := m; m′[i] := 1; for xk ∈ J [i]&k < i do { m′[k] := 0};
30 Push(S, (m′, Count′, i))
31 end
32 else
33 for xk ∈ J [i]&k < i do
34 for xj ∈ J [k]&j < i do {TCount[j] := 0} };
35 end
36 end
37 end
38 end

Algorithm 7: Final-MIS(G): Improved MIS Algorithm
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for each xk ∈ Γi(xi) ∩M do
for each xj ∈ Γi−1(xk) do

TCount[j] := TCount[j]− 1;
condition-check-point

end
end

Algorithm 8: Code Representing lines 16 to 22 of Algorithm 7

will hold precisely when TCount[j] is non-zero. Hence we see that α fails if and only if

TCount[j] = 0 for some xk ∈ Γi(xi) ∩M and some xj ∈ Γi−1(xk). This explains how

α is tested in line 19. Condition β fails if, for some xk = ys ∈ Γi(xi) ∩M and for some

xj ∈ Γi−1(xk) and xj ∈ Ai and j > k, TCount[j] = 0, because then xj ∈ Ai does not have

any neighbor in M − {y1, . . . , ys}. Thus line 20 tests condition β.

After the execution of the for loop in lines 16 to 21 the array TCount will contain the

number of neighbours in M other than Ai for every vertex in the second neighbourhood

of xi in Gi. In other words ∀xj ∈ Γi−1(Γi(xi)), TCount[j] = |(M\Ai) ∩ Γi−1(xj)|.

Lines 24 to 28 combine the updated values from Tcount and other values from Count

to form Count′ for m′. In line 33 and 34 TCount is reset when the condition fails.

To compute the complexity of this algorithm note that the for loops of lines 13, 16, 25

and 33 each takes O(
∑

xk∈Γi(xi)

d(xk)) time. The cumulative cost of processing one maxi-

mal independent set through all stages costs O(
∑
xi∈V

∑
xk∈Γi(xi)

d(xk)) which is O(
∑
v∈V

d(v)2).

Each additional set, except the initial empty set, is created in code-lined 26-32. This adds

a up to O(n +
∑

xk∈Γi(xi)

d(xk)). This term is dominated by O(
∑

v∈V d(v)2). So the total

time complexity is O(N
∑

v∈V d(v)2), where N is the number of maximal indepenndent

sets of the graph.

The space complexity is trivially O(n2) since there are at most n tuples present at any

point in time in the stack and each tuple takes O(n) space.
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Chapter 4

Number Of Maximal Independent

Sets Of Size Atmost k

In this chapter we simplify a proof of David Eppstein’s paper: Small Maximal Independent

Sets And Faster Exact Graph Coloring.

4.1 Introduction

In [6] David Eppstein’s proved that, for any n-vertex graph G and any non-negative integer

parameter k, there are at most 34k−n4n−3k maximal independent sets (MIS) I ∈ G with

|I| ≤ k. He proved this result by dividing into cases based on the degrees of vertices in

G. In his proof he considered cycles of length 3 and ≥ 4 as distinct cases, which is not

needed. In the next section we give a simplified proof of his theorem by merging the above

two cases into one.

4.2 Simplified Proof For The Number Of MIS Of Size At

Most k

Theorem 1. Let G be an n-vertex graph, and k be a non-negative integer. Then the

number of maximal independent sets I ∈ G for which |I| ≤ k is at most 34k−n4n−3k.

Proof. For any vertex v ∈ G, let N [v] be the neighbours of v, including v itself. We use

induction on n; in the base case n = 0, if a graph has no vertex, then there is one(empty)

maximal independent set and for any k ≥ 0, 1 ≤ 34k−040−3k = (81/64)k. This proves the
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base case. Otherwise, we divide into cases according to the degrees of vertices in G, as

follows:

(i) If G contains a vertex v of degree three or more, then each maximal independent set

I either contains v ( in which case I\{v} is a maximal independent set of G\N [v]) or

it does not contain v ( in which case I itself is a maximal independent set of G\{v}).

Thus, by induction the number of maximal independent sets of cardinality at most

k is at most

34k−(n−1)4(n−1)−3k + 34(k−1)−(n−4)4(n−4)−3(k−1)

=
(

3
4

+
1
4

)
34k−n4n−3k

= 34k−n4n−3k

as was to be proved. Here we use the fact that G\N [v] has at least n− 4 vertices.

(ii) If G contains a vertex v of degree 1 and let it’s neighbour be u. Then each maximal

independent set contains exactly one of v or u, and removing this vertex from the

set produces a maximal independent set of either G\N [v] or G\N [u]. If the degree

of u is d, this gives us by induction a bound of

34(k−1)−(n−2)4(n−2)−3(k−1) + 34(k−1)−(n−d−1)4(n−d−1)−3(k−1)

=
(

4
32

+
42

33
(
3
4

)d

)
34k−n4n−3k

≤ 8
9

34k−n4n−3k since, d ≥ 1

on the number of maximal independent sets of cardinality at most k.

(iii) If G contains an isolated vertex v, then each maximal independent set contains v

and the number of maximal independent sets of cardinality at most k is at most

34(k−1)−(n−1)4(n−1)−3(k−1)

=
16
27

34k−n4n−3k

(iv) In the remaining cases G consists of disjoint union of cycles. The length of a cycle, r,

may be odd or even. We know that if r is even, then it has 2 maximal independent

sets of size r/2, and if r is odd, then it has r distinct number of maximal independent
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sets of size (r − 1)/2. Suppose G has a cycle of length r. Then we consider two

cases. In the first case let r = 2t. Then from induction hypothesis the number of

maximal independent sets of size at most k is at most

 2
(
34(k−t)−(n−2t)4(n−2t)−3(k−t)

)
if k ≥ t

0 if k < t

In the latter case, the bound is trivially less than 34k−n4n−3k. In the former case

the bound is

2
(
34(k−t)−(n−2t)4(n−2t)−3(k−t)

)
= 34k−n4n−3k

(
2
(4

9
)t)

< 34k−n4n−3k

In the second case let r = 2t + 1. Then from induction hypothesis the number of

maximal independent sets of size at most k is at most

 (2t+ 1)
(
34(k−t)−(n−2t−1)4(n−2t−1)−3(k−t)

)
if k ≥ t

0 if k < t

In the latter case, the bound is trivially less than 34k−n4n−3k. In the former case

the bound is

(2t+ 1)
(
34(k−t)−(n−2t−1)4(n−2t−1)−3(k−t)

)
= 34k−n4n−3k

((
2t+ 1

) 4t−1

32t−1

)
= 34k−n4n−3k

((
2t+ 1

)22t−2

32t−1

)
= 34k−n4n−3k

((
2t+ 1

)22t−12−1

32t−1

)
= 34k−n4n−3k

((
t+ 1/2

)22t−1

32t−1

)
< 34k−n4n−3k since, (t+ 1/2)

(2
3
)2t−1 ≤ 1, ∀t ≥ 1

This completes the proof.
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Chapter 5

(3,3)-Constraint Satisfaction

Constraint Satisfaction Problem (CSP) is a generic problem which can be used to model a

variety of problems. In this chapter we give a randomized approach for solving (3,3)-CSP

problem. At last we propose a simple reduction from (2,2)-CSP instance to 2-SAT.

5.1 Introduction

Constraint Satisfaction Problem (CSP) is defined as follows. An instance of CSP involves n

variables {v1, v2 . . . , vn} and m constraints {c1, c2, . . . , cm}. Associated with each variable

is a list of colors and each constraint is a list of (variable,color) pairs. A solution of

an instance of CSP is an assignment of one color to each variable from it’s list such

that for each ci, ∃(v,X) ∈ ci such that color X is not assigned to v. An (a,b)-CSP

problem refers to a CSP problem in which each vertex has at most ‘a’ possible colors

and each constraint involves at most ‘b’ (variable,color) pairs. CSP is a generalization

of satisfiability and graph coloring problems. For instance, 3-SAT can be formulated as

a (2,3)-CSP in the following manner. Each variable of 3-SAT problem can be colored

either true(T) or false(F). For each clause like (x1 ∨ ¬x2 ∨ x3), we make a constraint

((v1, F ), (v2, T ), (v3, F )). Such a constraint is satisfied if and only if the clause is satisfied.

Three-coloring of a graph can be formulated as a (3,2)-CSP. Eppstein et.al. [2] gave

O(1.3289n) time exact algorithm to color a 3-colorable graph by 3-colors by solving (3,2)-

CSP.
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5.2 Related Work

Many combinatorial problems can be viewed as a special case of constraint satisfaction

problem. Some examples are graph coloring, vertex cover and the satisfiability problem.

There exist different approaches to solve these problems. Some of them uses constraint

propagation to simplify the original problem. Others uses backtracking to directly search

for a possible solution. Some uses combination of the two [12]. However in this section

we restrict our discussion to a very simple randomized algorithm due to Beigel and Epp-

stein [2] for solving (3,2)-CSP instances in expected time O(2n/2nO(1)). The randomized

algorithm is a direct consequence of the following two results.

Lemma 7. [2] Let v be a variable in an (a,2)-CSP instance I, such that only two colors

are allowed at v. Then we can find an equivalent (a,2)-CSP instance I ′ in polynomial time

with one fewer variable.

Proof. The variable set of I ′ contains variable of I except v. The constraint set is

defined as follows. Let the two colors allowed at v be R and G. Define conflict(R)

= {(w,X)|((w,X), (v,R)) is a constraint}. Then we add conflict(R) x conflict(G) to the

set of constraints containing v. This is the constraint set of I ′.

We will now show that I has a solution iff I ′ has a solution. Consider an arbitrary

((w,X), (u, Y )) ∈conflict(R) x conflict(G). If both (w,X) and (u, Y ) were presents in a

coloring, then there would be no possible color left for v. Conversely suppose all such

constraints are satisfied without loss of generality assume that elements of conflict(R) are

satisfied. Then by assigning R to v we satisfy all the original constraints.

Lemma 8. [2] Given a (3,2)-CSP instance I, another instance I ′ can be computed in

polynomial time which has two fewer variable, such that if I ′ is solvable then so is I, and

if I is solvable then with probability at least 1/2 so is I ′.

Proof. If no constraint exists, we can solve the problem immediately. Otherwise arbitrary

choose some constraint ((v,X), (w, Y )). Rename the colors if necessary so that both v

and w have available the same three colors R, G and B, so that X = Y = R. Restrict

the coloring list of v and w to two colors each in one of the four ways given by: (i) Lv =

{G,B}, Lw = {R,G}, (ii) Lv = {G,B}, Lw = {R,B}, (iii) Lv = {R,G}, Lw = {G,B}, (iv)
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Lv = {R,B}, Lw = {G,B}. Select one of these options with equal probability. Observe

that if the new (restricted) problem is solvable then so is I. Conversely if I has a solution,

then at least two of the four options is solvable. Hence the restricted problem is solvable

with probability 1/2. Now apply the above Lemma and eliminate both v and w from the

new (restricted) problems. The resulting problem instance is I ′.

Corollary 3. [2] In expected time O(2n/2nO(1)) we can find a solution to a (3,2)-CSP

instance if one exists.

Proof. Repeating the above mentioned reduction n/2 times results in to a problem without

any variable hence trivially decidable. If it has a solution then we can build the solution

of the original problem with probability 2−n/2. Hence we iterate over these steps. If the

original problem has a solution then a solution will be computed in (k+ 1) iteration with

probability (1−2−n/2)k2−n/2. Hence the expected number of iteration for a successful run

will be
∞∑

k=0

(k + 1)2−n/2(1− 2−n/2)k = 2n/2.

5.3 Simplication Of (3,3)-CSP Instances

In this section we describe some situations in which the number of variables in any (3,3)-

CSP instance, or the number of colors available to some of it’s variable may be reduced

in polynomial time.

Lemma 9. Let (v,R) and (v,B) be (variable,color) pairs in an (a,3)-CSP instance, such

that whenever the instance contains a constraint ((v,R), (w,X), (u,Y)) it also contains a

constraint ((v,B), (w,X), (u,Y)). Then we can find an equivalent (a,3)-CSP instance with

one fewer color for some variable.

Proof. Any solution involving (v,B) can be changed to one involving (v,R) without vio-

lating any additional constraints, so it is safe to remove the option of coloring v with color

B.

Lemma 10. Let (v,R) be a (variable,color) pair in an (a,b)-CSP instance that is not

involved in any constraints. Then we can find an equivalent (a,b)-CSP instance with one

fewer variable.
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Proof. We may safely assign color R to v and remove it from the instance.

Lemma 11. Let (v,R) and (w,B) be (variable,color) pair in an (a,3)-CSP instance, such

that they are involved in constraints with all color options of some third variable u. Then

we can find an equivalent (a,3)-CSP instance with fewer constraints.

Proof. We will simply replace all the constraints of the type ((v,R), (w,B), (u, ∗)) by

((v,R), (w,B)). It is clear that this replacement does not reduce the solution space of the

original problem since if the added constraint is satisfied then vertex u can be assigned

any color, conversely if the added constraint can not be satisfied then there is no color left

for u and the original problem is not solvable.

Lemma 12. Let there are two variables u1 and u2 with color option A,B,C and D,E, F

respectively, such that every constraint containing u1 or u2 contains at least one of these

four pairs (u1, A), (u1, B), (u2, D) and (u2, E). Then we can find an equivalent instance

with two fewer variables.

Proof. Assign color C to u1 and F to u2 and delete the two variables along with there

constraints involving them.

5.4 Trivial Algorithm For (3,3)-CSP

Any (3,b)-CSP instance with n variables can be solved in time O(3n) : Try out all possible

3n coloring of n variables and for each coloring check whether the constraints are satisfied

or not.

5.5 Our Randomized Algorithm For (3,3)-CSP

This algorithm is inspired by randomized (3,2)-CSP algorithm [2].

Lemma 13. Any (3,3)-CSP instance can be solved in time O(5n/2p(n,m)) with probability

atleast 2−n/2, where p(n,m) is a polynomial in the number of variables and number of

constraints.

Proof. Suppose we have to solve a (3,3)-CSP instance I. If no constraint exists in I

then, we can solve the problem immediately. If every constraint contains at most two
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(variable,color) pairs, then by corollary 3, we can find the solution in expected time

O(2n/2nO(1)). Otherwise arbitrarily choose two (variable,color) pairs from any constraint

ci, say (v,X) and (w, Y ), (ci has three (variable,color) pairs). Construct a set of con-

straints S = {cj |(v,X), (w, Y ) ∈ cj}. Say, |S| = q, q can never be zero because ci ∈ S.

Suppose the 3rd (variable,color) pair in each cj be denoted as (uj , Aj), 1 ≤ j ≤ q. Rename

the colors if necessary so that both v and w have the same three colors R,B and G in

their color lists and set X = Y = R.

We will reduce the (3,3)-CSP instance I into two smaller subinstance I1 and I2. In I1 we

will assign color R to both the variables v and w and remove the color option Aj from

each of uj , 1 ≤ j ≤ q. Also remove the (variable,color) pair (v,R) and (w,R) from all the

constraints where they are not appearing together. Clearly this ensures the satisfaction

of all the constraints in S and the number of variables also reduce by two. Hence every

solution of I1 results in a solution of I in which both v and w is assigned R.

For the remaining solution of I we construct I2. In I2 we will remove the constraint in

S from I and include a single constraint ((v,R), (w,R)). If we satisfy the added constraint

in I2 all constraints in S will be satisfied.

We will use randomized approach which we use in Lemma 8. For I2 we will select one out

of four options uniformly at random as described in the proof for Lemma 8. Let I ′2 be the

selected instance. Once again solutions of each of these options leads to solutions of I2 and

conversely if I2 has a solution then at least two of these options also has a “corresponding”

solution. Hence I ′2 will be solvable with probability greater than or equal to 1/2. Vertices

v and w have two color options each in I ′2. Hence in the solution of I ′2 these vertices can

be colored in one of 4 possible ways. In order to reduce I ′2 into smaller problem(s), we

assign these colors combinations to v and w and remove these variables from the problem.

Hence we generate 4 sub-problems I1
2 , I2

2 , I3
2 and I4

2 from I ′2 each having n− 2 variables.

Solution of any of these sub-problems leads to a problem of I ′2.

This approaches reduces I into I1, I1
2 , I2

2 , I3
2 and I4

2 , all having two fewer variables.

Hence we can apply this reduction repeatedly to solve I.

Assume that I is solvable. Suppose α(n) be the success rate of finding a solution of a

(3,3)-CSP instance I with n variables. Let β be the probability of finding a solution for

I1 and γ from I2. Since I is solvable, β + γ ≥ 1. Further I ′2 is solvable with probability
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γ/2. Thus

α(n) = β ∗ α(n− 2) + γ/2 ∗ α(n− 2)

= (β + γ/2) ∗ α(n− 2)

≥ 1/2α(n− 2)

Thus,

α(n) ≥ (1/2)n/2

The time complexity of one round in which we reduce n variables to zero in n/2 steps is

O(5n/2) because the branching factor of the reduction tree is 5 and the depth is n/2.

Corollary 4. We can find a solution to a (3,3)-CSP instance if one exists in expected

time O(2n/25n/2p(n,m)), where p(n,m) is a polynomial in the number of variables and

number of constraints.

Proof. In O(5n/2p(n,m)) we can find a solution of (3,3)-CSP instance with probability

2−n/2 using the above Lemma. As we saw in section 5.2, the expected number of rounds is

2n/2 for solving a solvable problem. Hence the expected cost will be O(2n/25n/2p(n,m)) =

O(10n/2p(n,m)).

5.6 Remarks On Our Randomized Algorithm

We applied the approach of randomized (3,2)-CSP to solve randomized (3,3)-CSP problem.

Unfortunately, this approach does not work. The expected time complexity of (3,3)-CSP

randomized algorithm is worse then the trivial algorithm for solving (3,3)-CSP.

5.7 Approximation Algorithm For Max-(2,2)-CSP

In this section we discuss the problem ’Max-CSP’: given a CSP instance which is not

necessarily solvable, up to what fraction of constraints can be satisfied in polynomial

computation. Here we show that this problem is easy to solve for (2,2)-CSP.
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(2,2)-CSP has a natural reduction into 2-SAT. The variable in CSP corresponds to

variables. Without loos of generality, assume that the colors are {0, 1}. A pair (x, a)

transforms to literal x if a = 0, else to x̄. Then a constraint is satisfied iff the corresponding

clause is satisfied by the same coloring (truth value assignment). The best Max 2-SAT

algorithm is due to Lewin et.al [14] giving 0.940-approximation. Hence we have 0.940-

approximation for (2,2)-CSP.
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Chapter 6

Game Coloring Number Of Planar

Graphs

In this chapter we discuss the game coloring number of planar graphs. This parameter

provides an upper bound for the game chromatic number of graph. We describe the

problem and its solution given by Xuding Zhu [17] and point out an error in it.

6.1 Introduction

Let G = (V,E) be a graph and let X be a set of colors. The game chromatic number of G

is defined through a two person game called coloring game. Alice and Bob take alternate

turns with Alice having the first move. Each play of either player consists of coloring an

uncolored vertex of G with a color from X. Adjacent vertices must be colored by distinct

colors. If after n = |V | moves, the graph G is colored, Alice is the winner. Otherwise at

any stage, if there is an uncolored vertex v such that each color of X is assigned to at least

one of its neighbours, then Bob is the winner. The game chromatic number of G, denoted

by χg(G), is the least cardinality of a color set X for which Alice has a winning strategy.

The coloring game on planar graphs was invented by Steven J. Brams, and was pub-

lished by Gardner [8]. The game chromatic number of planar graphs was first studied by

Keirstead and Trotter [11]. Recently Xuding Zhu made a significance contribution in this

field [17, 18]. Since it seems very difficult to determine the game chromatic number of even

small graphs, Xuding Zhu in [17] discusses a variation of the game chromatic number, the

game coloring number.



34 Game Coloring Number Of Planar Graphs

Game Coloring Number

Suppose G = (V,E) is a graph and X is an infinite set of colors. The game coloring

number of G is defined through a two-person game: the coloring game. Alice and Bob,

with Alice playing first, take turns in playing the game. Each play by either player consists

of coloring an uncolored vertex of G. A player during his/her turn must first select an

uncolored vertex u. If one of the already used colors, is not assigned to any of neighbours

of u, then the player must assign one of the already used colors to u. Otherwise a new

color must be used. The game ends when all vertices are colored. For a vertex v of G,

let b(v) be the number of neighbours of v that are colored before v is colored. The score

of the game is s = 1 + max
v∈V

b(v). Alices goal is to minimize the score, while Bobs goal

is to maximize it. The game coloring number colg(G) of G is the least s such that Alice

has a strategy that results in a score at most s. It is easy to see that for any graph G,

χg(G) ≤ colg(G). The next two Lemmas are trivial and we are quoting them without

proof.

Lemma 14. Suppose H is a spanning subgraph of G. Then colg(H) ≤ colg(G).

Lemma 15. Suppose G = (V,E) and E = E1∪E2. Let G1 = (V1, E1) and G2 = (V2, E2).

Then colg(G) ≤ colg(G1) + ∆(G2), where ∆(H) denotes maximum degree of graph H.

6.2 Xuding Zhu’s Strategy Of Game Coloring For Planar

Graphs

In [17] Xuding Zhu first decomposes the planar graph G into two graphs by partitioning

it’s edges and occasionally adding some new edges such that these graph satisfy some

properties. He also orients the edges of these graphs. His strategy for Alice is to focus on

only one of these graphs. The game coloring number is deduced by using Lemma 15.

6.2.1 Decomposition Of Planar Graphs

In the following “i-vertex” will refer to a vertex of degree i and “i, j-edge” will refer to

an edge between an i-vertex and a j-vertex. We call an edge ‘e’ a light edge if it is either

a 3, j-edge for some j ≤ 10, or a 4, j-edge for some j ≤ 8 or a 5, j-edge for some j ≤ 6.
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Borodin in [3] has proved that, every planar graph with minimum degree ≥ 3 contains a

light edge. Xuding Zhu uses this fact for the decomposition of planar graphs.

Let Ḡ = (V, Ē) be a directed graph. If e = uv ∈ Ē, then we say that edge e is directed

from u to v. u is called an in-neighbour of v and v is called an out-neighbour of u. The

in-degree (resp. out-degree) of v is the number of in-neighbours (resp. out neighbours) of

v. The degree of v is the sum of it’s in-degree and out-degree.

Lemma 16. [17] Suppose G = (V,E) is a connected planar graph without 2, 2-edges and

1-vertices. Then there are two directed graphs ḠR = (V, ĒR) and ḠB = (V, ĒB) that

satisfy the following conditions:

1. E ⊂ ER ∪EB, and ER ∩EB = ∅, where ER and EB are undirected edges associated

with ĒR and ĒB respectively.

2. ḠR has maximum degree at most 8, and has maximum out-degree at most 3.

3. ḠB is acyclic, and each vertex has out-degree 2, except two vertices, say r′, r, which

are joined by a directed edge r′r, and have out degree 1 and 0 respectively.

4. Suppose u, v are the two out-neighbours of a vertex x in ḠB, then either uv ∈

ĒR ∪ ĒB, or vu ∈ ĒR ∪ ĒB.

In the following we give a succinct description of an algorithm to compute ḠR and ḠB.

The edges of ḠR will referred as red and those of ḠB as blue.

The graph ḠR and ḠB are more or less obtained from G by coloring it’s edges by

two colors red and blue, and assigning an orientation at the same time. In the process of

coloring the edges of G, we keep track of a planar graph Gu, which is a subgraph of G

and a few additional edges. The algorithm for constructing graphs ḠR and ḠB is given

in Algorithm 9.

Xuding Zhu claims that Gu is always a planar graph without 1-vertices, parallel edges,

loops, and 2, 2-edges, and that the coloring process terminates in O(|E|) steps.

In section 6.3, we present a counter example which disproved the above claim. For

completeness we are presenting Alice’s strategy given by Xuding Zhu [17] in Appendix B.
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input : A connected planar graph G = (V,E) without 2, 2-edges and 1-vertices
output: Outputs two directed graphs ḠR = (V, ĒR) and ḠB = (V, ĒB)

Initialize, Gu = G
repeat

If Gu is isomorphic to K3, then color all edges of Gu blue and assign orientations
to the edges so that it is acyclic. Otherwise, suppose |V (Gu)| ≥ 4. If Gu has a
vertex say v, of degree 2 with edges vu and vw, then we do the following:

1. Color the two edges incident on v blue, and orient these two blue
edges from v to the respective neighbours.

2. Delete v (together with the two incident edges) from Gu.

3. If uv is not an edge of Gu ∪GR ∪GB, then add the edge uv to Gu.

If Gu contains no vertex of degree 2, then Gu has a light edge, say ‘e’. In this
case we color ‘e’ red, orient it from an end vertex of degree ≤ 5 to the other end
vertex and delete ‘e’ from Gu.

until Gu 6= φ

Algorithm 9: Algorithm for decomposition of planar graph

6.3 Lacuna In The Decomposition Of The Planar Graph

Consider the planar graph G = (V,E) given in figure 6.1.

a

b c

d
e

fg

h

ij

k

Figure 6.1: Planar graph, G, without 2, 2-
edge and 1-vertex: A counter example for the
decomposition algorithm

Figure 6.2: Resulting planar graph after ap-
plying steps 1, 2 and 3 of Algorithm 9 on
vertex a of figure 6.1

We apply the decomposition algorithm on G. Initialize Gu = G. Clearly Gu has a

vertex ‘a’ of degree two, hence we color edges ab and ac blue and orient them away from

a and then delete a from Gu. Since there is already an edge bc, we do not have to add

any new edge.

After finishing the above step we have a 2, 2-edge, that is bc, disproving the claim of
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Xuding Zhu that Gu is always free from 2, 2-edge. The resulting planar graph is shown

in figure 6.2. If we resume with the algorithm even in the presence of the said 2, 2-edge

the partition process comes to completion without any hurdle. But this is not the case in

general.

Consider the graph Gu given in figure 6.3.

a

l

Figure 6.3: Planar graph, Gu, without 2, 2-
edge and 1-vertex: Another counter example
for the decomposition algorithm

a

l

Figure 6.4: Resulting planar graph after ap-
plying steps 1, 2 and 3 of Algorithm 9 on
vertex b of figure 6.3

Initially algorithm will color edges ba and bc blue and remove vertex b from Gu. The

resulting graph will have a 2, 2-edge ac as shown in figure 6.4. In this case the algorithm

will fail to proceed any further since it will create a 1-vertex. Hence we conclude that

Xuding Zhu’s claim of non-appearence of 2, 2-edge is incorrect and in presence of these

edges the decompositioning algorithm may fail.
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Chapter 7

Conclusion

We propose a simple algorithm for computing the Tutte-polynomial of a graph in O((1.18+

o(1))ndn) time, where n is the number of vertices and d is the average degree of the

graph. A simplified implementation of Tsukiyama’s algorithm [15] for enumerating all

maximal independent sets of a graph has been suggested. A randomized algorithm for

(3,3)-CSP has been developed along the lines of the randomized algorithm for (3,2)-CSP

[2]. Unfortunately it’s expected time complexity turns out to be worse than that of the

trivial algorithm. An improved proof for the bound on the number of maximal independent

sets of size at most k has been devised [6]. We also identified a flaw in the partition

algorithm of planar graphs proposed by Xuding Zhu [17].
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Appendix A

Some Proofs

In reference to section 2.3, we are proving e− e−1 > ( n
n−1)n−1 − (n−1

n )n as follow:

Lemma A.1 (n− k)nk < n(n− 1)k, for all n, k ≥ 1.

Proof Lemma holds trivially for n ≤ k. So assume that n > k. To show that,

n− k
n

< (
n− 1
n

)k

or show that,

1− k

n
< (1− 1

n
)k

or,

1− k

n
< [1− k

n
+
k(k − 1)

2!
(
1
n

)2 − k(k − 1)(k − 2)
3!

(
1
n

)3 + . . . ]

or,

0 <
k(k − 1)

2!
(
1
n

)2 − k(k − 1)(k − 2)
3!

(
1
n

)3 + . . .

or show that,

0 <
∞∑

r=1

[
k(k − 1) . . . (k − 2r + 1)

(2r)!
− k(k − 1) . . . (k − 2r)

(2r + 1)!
1
n

]
︸ ︷︷ ︸

Cr

( 1
n

)2r
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and ,

Cr =
k(k − 1) . . . (k − 2r + 1)

(2r)!

[
1− k − 2r

n(2r + 1)

]
> 0, Since, k < n

Hence, RHS > 0. This completes the proof.

Corollary
(n−1)(n−2)

(n−1)2
−n(n−1)

n2

2! +
(n−1)...(n−4)

(n−1)4
−n...(n−3)

n4

4! + · · · < 0.

Proof Consider a general form,

1
(2k)!

[
(n− 1) . . . (n− 2k)

(n− 1)2k
− n . . . (n− 2k + 1)

n2k

]
, forall K > 0,

=
1

(2k)!
(n− 1) . . . (n− 2k + 1)

[
(n− 2k)
(n− 1)2k

− n

n2k

]
< 0 from Lemma A.1

This completes the proof.

Lemma A.2 e− e−1 > ( n
n−1)n−1 − (n−1

n )n.

Proof

RHS = (1 +
1

n− 1
)n−1 − (1− 1

n
)n

=
[
1 + (n− 1)

1
n− 1

+
(n− 1)(n− 2)

2!
( 1
n− 1

)2 +
(n− 1)(n− 2)(n− 3)

3!
( 1
n− 1

)3 + . . .

]
−
[
1− n 1

n
+
n(n− 1)

2!
( 1
n

)2 − n(n− 1)(n− 2)
3!

( 1
n

)3 + . . .

]
= 2 +

(n− 1)(n− 2)(n− 3)
3!

( 1
n− 1

)3 +
n(n− 1)(n− 2)

3!
( 1
n

)3 + . . .

+
[(n− 1)(n− 2)

2!
( 1
n− 1

)2 − n(n− 1)
2!

( 1
n

)2]+ . . .

< 2 +
2
3!

+
2
5!

+ . . .︸ ︷︷ ︸
S1

+
[(n− 1)(n− 2)

2!
( 1
n− 1

)2 − n(n− 1)
2!

( 1
n

)2]+ . . .︸ ︷︷ ︸
S2

< e− e−1 Since S1 = e− e−1 and S2 < 0 from the Corollary above

This completes the proof.
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Alice’s Strategy

In reference to the section 6.2, we are presenting Alice’s strategy of coloring game proposed

by Xuding Zhu [17].

Based on the decomposition of planar graphs (section 6.2.1) into ḠR and ḠB, Xuding Zhu

in [17] has given a strategy for Alice, so that no matter how Bob plays the coloring game,

the score of the game will be at most 19. In his strategy Alice will only take the graph

ḠB into consideration. We need to define some terms before describing the strategy.

Suppose x ∈ V − {r, r′}, and u, v are the two out-neighbours of x in ḠB. by Lemma

16, either uv or vu ∈ ĒR ∪ ĒB. Assume that vu ∈ ĒR ∪ ĒB. We call u, v the parents of x,

call u the major parent of x, and v the minor parent of x. We call x a major son of u, and

call it the minor son of v. We call the edge xu a major edge and xv a minor edge. Two

vertices x, y are called brothers if x and y have the same parents. We call the edge r′r a

major edge, and r′ has a single major parent, no minor parent, and r has no parents.

Let T be a directed spanning tree of ḠB induced by the major edges of GB. In the

process of coloring game, Alice will keep track of a set, which includes r and induced graph

on it is a subgraph of T . We call this set the active set, and denote it by Ta. The vertices

of Ta are called as active vertices. We define two operations on any directed path in ḠB,

the extension and the switch, as follows:

Suppose P = (y1, y2, . . . , yk) is a directed path in ḠB not containing any Ta-vertex. Let

P ′ be the unique directed path of T connecting yk to Ta (i.e, the first vertex of P ′ is yk,

the last vertex of P ′ is a vertex of Ta, and all inner vertex of p′ (if any) are not in Ta).

The concatenation of P and P ′ is called the extention of P . If the last vertex of P is in
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Ta then, the extension of P is itself.

Suppose P = (y1, y2, . . . , yk) is a directed path in ḠB, and suppose that the last edge,

yk−1yk, of P is a major edge. Let y′ be the minor parent of yk−1. Then the directed path

P ′ = (y1, y2, . . . , yk−1, y
′) is called the switch of P . Note that if the last edge of P is a

major edge and not equal to r′r, then it’s switch is unique. Otherwise it’s switch is not

defined.

Alice’s strategy is as follows:

Initially, Alice color r, and set Ta = {r}. Suppose at certain stage of the game, Bob has

colored the vertex x. Then Alice select the next vertex to color by the following rule:

Let y be the major parent of x, and let P1 = xy. Let P2 be the extension of P1. Alice will

repeat the following procedure until she select a vertex to color.

Suppose the presently found directed path is P2t for some t ≥ 1, and that the last edge

of P2t is vu.

1. If vu = r′r, then select any free (uncolored) vertex x such that all it’s predecessors

in GB have been colored.

2. If vu is a major edge, and the number of active brothers of v is even and that u is

a free (uncolored) vertex, then select u.

3. If vu is a major edge, and that either v has an odd number of active brothers, or u

is a colored vertex, then let P2t+1 be the switch of P2t and let P2t+2 be the extension

of P2t+1, and go back to repeat the procedure ( with P2t replace by P2t+2).

4. If vu is a minor edge, and u is a free (uncolored) vertex, then select u.

5. If vu is a minor edge, and u is a colored vertex, then select any free (uncolored)

vertex x such that all it’s predecessors in GB have been colored.

After Alice selected the next vertex to color, say v, add the vertices of the directed path

P2t and the vertex v to Ta, where P2t is the last path found in the procedure above. Also

color the vertex v with first available color from the color set X.

For completeness, we quote the theorem of Xuding Zhu, which bounds the score of the

coloring game to 19.

Theorem 2. [17] If Alice uses the strategy described above, then the score of the coloring

game is at most 19.
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