# Understanding Cutting Planes for QBFs

Olaf Beyersdorff<sup>1</sup> Leroy Chew<sup>1</sup> Meena Mahajan<sup>2</sup>

Anil Shukla<sup>2</sup>

 $^{1}$  School of Computing, University of Leeds, UK  $^{2}$  Institute of Mathematical Sciences Chennai, India

FSTTCS 2016 Chennai, India December 15th, 2016

- Resolution Proof System
- 2 Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



#### Resolution

- Introduced by Blake in 1937.
- Resolution is a proof system for proving that boolean formulas in a CNF form are unsatisfiable.
- The only inference rule in resolution is:

$$\frac{C \vee x \quad D \vee \neg x}{C \vee D}$$

- CNF formula  $F \in \mathsf{UNSAT} \implies F$  has a **resolution proof** (completeness).
- A CNF formula F has a **resolution proof**  $\implies F \in \mathsf{UNSAT}$  (Soundness).



• Let  $F = \{C_1, \dots, C_k\}$  be an unsatisfiable formula over n variables.

- Let  $F = \{C_1, \dots, C_k\}$  be an unsatisfiable formula over n variables.
- A resolution proof of  $F \in UNSAT$  is a sequence of clauses  $\pi = \{D_1, \dots, D_t\}$  such that
  - The last clause  $D_t$  is the empty clause  $\square$ .
  - Each clause  $D_q$  is either one of the initial clauses or is derived from some clause  $D_m$ ,  $D_n$  with m, n < q using the resolution rule.

- Let  $F = \{C_1, \dots, C_k\}$  be an unsatisfiable formula over n variables.
- A resolution proof of  $F \in UNSAT$  is a sequence of clauses  $\pi = \{D_1, \dots, D_t\}$  such that
  - The last clause  $D_t$  is the empty clause  $\square$ .
  - Each clause  $D_q$  is either one of the initial clauses or is derived from some clause  $D_m$ ,  $D_n$  with m, n < q using the resolution rule.
- If we store pointers from each  $D_m, D_n$  to  $D_q$  then we actually get a DAG  $G_{\pi}$ . We call  $G_{\pi}$ , proof graph associated with  $\pi$ .
- If  $G_{\pi}$  is a tree then  $\pi$  is called a tree-like resolution proof of F.



# Some Examples

• Consider the following unsatisfiable formula on two variables:

$$(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y).$$

## Some Examples

• Consider the following unsatisfiable formula on two variables:

$$(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y).$$



- Resolution Proof System
- 2 Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# Cutting Planes (CP) Proof System

- Introduced by Cook, Coullard, and Turán in 1987 for unsatisfiable CNF formula.
- Cutting planes deals with linear inequalities, not with clauses.
- CNF formula F is first encoded as a set of inequalities R(F).

# Encoding F into R(F)

- Clause  $C = x_1 \lor \neg x_2 \lor x_3$  is encoded as  $x_1 + (1 x_2) + x_3 \ge 1$ .
- Clearly any Boolean assignment  $\alpha$  satisfies C iff  $\alpha$  satisfies R(C).
- Given,  $F = C_1 \wedge \cdots \wedge C_m$ .
- $R(F) = \{R(C_1), \dots, R(C_m)\}$  and the inequalities  $x \ge 1, -x \ge -1 \ \forall$  variables x, which we called Boolean axioms.
- Boolean axioms force  $x \in \{0, 1\}$ .



#### **CP Proof**

- Let R(F) be a set of inconsistent linear inequalities .
- A CP refutation of R(F) is a sequence of inequalities  $\pi = I_1, I_2, \dots, I_I$  such that:
  - The last inequality  $I_I \equiv 0 \geq C$ , for some positive integer C, and
  - Each inequality  $I_j$  either belongs to R(F) (recall that R(F) also include the Boolean axioms), or,
  - *I<sub>j</sub>* is derived from some earlier inequalities in the sequence via one of the inference rules (i.e., Add, Multiply, or divide).



#### **CP Proof**

Add: from 
$$\sum_k c_k x_k \ge C$$
 and  $\sum_k d_k x_k \ge D$  derive  $\sum_k (c_k + d_k) x_k \ge C + D$ .

**Multiply**: from  $\sum_{k} c_k x_k \geq C$  derive  $\sum_{k} dc_k x_k \geq dC$ , where  $d \in \mathbb{Z}^+$ .

**Divide**: from  $\sum_{k} c_k x_k \ge C$  derive  $\sum_{k} \frac{c_k}{d} x_k \ge \left\lceil \frac{C}{d} \right\rceil$ , where  $d \in \mathbb{Z}^+$  divides each  $c_k$ .



## Examples

• Consider the CNF formula:

$$(x \lor y) \land (\neg x \lor y) \land x \lor \neg y) \land (\neg x \lor \neg y).$$

- We have the following linear inequalities:
  - x + y > 1,
  - $(1-x)+y \ge 1$ ,
  - $x + (1 y) \ge 1$ , and
  - $(1-x)+(1-y) \ge 1$  encoding it.
  - We also have Boolean axioms.

# CP Proof Example

$$(1-x)$$
 +  $y$   $\geq$  1 axioms  $(1-x)$  +  $y$   $\geq$  1 axioms  $1$  +  $2y$   $\geq$  2 after addition  $2y$   $\geq$  1 after rechange  $y$   $\geq$  1 after division

$$\begin{array}{ccccc} x & + & (1-y) & \geq & 1 \text{ axioms} \\ (1-x) & + & (1-y) & \geq & 1 \text{ axioms} \\ 1 & + & 2(1-y) & \geq & 2 \text{ after addition} \\ & & 2(1-y) & \geq & 1 \text{ after rechange} \\ & & (1-y) & \geq & 1 \text{ after division} \end{array}$$

• Now add inequalities  $y \ge 1$  and  $(1-y) \ge 1$  to derive  $0 \ge 1$ .



- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- 4 Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# $f_2$ Simulates $f_1$



 $f_1$  that  $x \in L$ 

# $f_2$ Simulates $f_1$





# $f_2$ p-simulates $f_1$





In addition, if g is poly time computable then we say that  $f_a$  p-simulates  $f_a$ .

# $\overline{f_2}$ cannot simulate $f_1$

- Intuitively,  $f_2$  cannot simulate  $f_1$  if there exists a family of polynomial sized formulas  $F_n$ , such that,
  - $F_n$  has short proof in  $f_1$  but,
  - Requires exponential sized proofs in the system  $f_2$ .
- If  $f_1$  cannot simulate  $f_2$  and  $f_2$  cannot simulate  $f_1$  then the proof systems  $f_1$  and  $f_2$  are **incomparable**.

## Resolution vs Cutting Planes

- Cutting Planes p-simulates Resolution ((Cook, Coullard, and Turán 1987).
- Resolution cannot simulate Cutting Planes (witness family  $PHP_n$ : based on pigeonhole principle).

- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# Quantified Boolean Formulas (QBFs)

• Consider a false QBF formula

$$Q_1x_1 \dots Q_ix_i \dots Q_ix_i \dots Q_nx_n$$
.  $F$ ,

where F is a quantifier free CNF formula over variables  $x_1, \ldots, x_n$ , each  $Q \in \{\exists, \forall\}$ .

- We say  $x_i$  is on left of  $x_i$  or  $x_i$  is before  $x_i$ .
- $x_n$  is the innermost variable (rightmost variable).
- Several Resolution based proof system have been developed for false QBFs. For example Q-Res, QU-Res and so on.



## Q-Res: Definition

- Q-Res = resolution + ∀-reduction [Kleine Büning, Karpinski, and Flögel; 1995].
- Q-Res proof system proofs the falseness of QBF formulas.
- Q-Res has two inference rules:
  - **Resolution rule**:  $\frac{C \lor x}{C \lor D}$ , where x is existential literal and  $C \lor D$  is not a tautology.
  - $\forall$ -reduction:  $\frac{C \vee x}{C}$ , where x is universal variable, and all existential variable in C are before x in the prenex of the given QBF formula.
- If the resolution rule is also permitted on universal variables, then we get QU-Res proof systems (Allen Van Gelder; 2012).



## Expansion Based QBF Resolution Proof System

- There are two main paradigms in QBF solving: Expansion based solving and CDCL solving.
- An example of CDCL based QBF proof system is Q-Res (which we have seen).
- An example of expansion based QBF proof system is ∀Exp+Res [Janota and Marques-Silva; 2013].

- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **1** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# CP+∀red Proof System

- We introduced a new proof systems for false QBFs based on Cutting Planes.
- $CP+\forall red = Cutting Planes + \forall -Red Rules.$
- Like Cutting Planes, CP+∀red works with linear inequalities.
- Given a false QBF  $\mathcal{F} \equiv \mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n$ . F, where  $F = C_1 \wedge \dots \wedge C_m$ .
- Encode it as  $\phi \equiv \mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n$ .  $\phi_F$ , where  $\phi_F = \{R(C_1), \dots, R(C_m)\} \cup B$ , B is the set of Boolean axioms.
- Clearly  $\mathcal{F}$  is false iff  $\phi$  is false.



## CP+∀red Refutations

- A CP+ $\forall$ red proof  $\pi$  of  $\phi$  (and therefore of  $\mathcal{F}$ ) is a quantified sequence of inequalities, that is
- $\pi \equiv \mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n$ .  $[I_1, \dots, I_l]$  where, the last inequality  $I_l \equiv 0 \geq C$ , for some positive constant C. For every  $j \in \{1, \dots, l\}$ ,
  - $I_j \in \phi_F$  (recall that  $\phi_F$  also includes the Boolean axioms), or
  - *I<sub>j</sub>* is derived from the earlier inequalities in the sequence via Add, Multiply, Divide (same as in Cutting Planes proof system), or ∀-Red rule.

### CP+∀red Refutations

- $\forall$ -Red rule: From  $\sum_{k \in [n] \setminus \{i\}} c_k x_k + h x_i \ge C$  derive  $\left\{ \begin{array}{l} \sum_{k \in [n] \setminus \{i\}} c_k x_k \ge C & \text{if } h > 0; \\ \sum_{k \in [n] \setminus \{i\}} c_k x_k \ge C h & \text{if } h < 0. \end{array} \right.$
- This rule can be used provided variable  $x_i$  is universal, and provided all existential variables y with nonzero coefficients in the hypothesis should come before  $x_i$ . (That is, if  $x_j$  is existential and  $c_i \neq 0$ , then j < i.
- Observe that when h > 0, we are replacing  $x_i$  by 0, and when h < 0, we are replacing  $x_i$  by 1. We say that the universal variable  $x_i$  has been reduced.



# CP+∀red is Complete and Sound for false QBFs

- $\mathcal{F}$  is false QBF  $\implies \mathcal{F}$  (its encoding) has a CP+ $\forall$ red refutation.
  - Proved by showing that CP+∀red p-simulates
     QU-Res which is known to be complete for false
     QBFs.
- There is a CP+ $\forall$ red refutation of  $\mathcal{F}$  (its encoding)  $\Longrightarrow \mathcal{F}$  is a false QBF.
  - Because the inference rules are sound.

- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- 1 Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# $\overline{\mathsf{CP}} + \forall \mathsf{red}$ is above QU-Res and below $\mathsf{Frege} + \forall \mathsf{red}$ but Incomparable with expansion-based calculi





- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



## Strategy Extraction

- $Q_1x_1...Q_nx_n$ . F can be seen as a game between universal  $(\forall)$  and existential  $(\exists)$  players.
- A strategy for any universal variable u is a function from all the variables before u to  $\{0,1\}$ .
- A QBF F is false iff there exists a winning strategy for the universal player.
- A QBF proof system has a strategy extraction property for a particular circuit size  $\mathcal C$  whenever we can efficiently extract from every refutation  $\pi$  of a QBF formula  $\mathcal F$  a winning strategy for the universal player in the circuit class  $\mathcal C$ .



## Strategy Extraction for CP+\forall red

 We have shown that from CP+∀red proof of length / (number of inequalities), we can extract a winning strategy for the universal player as an LTF-decision list of length /. Using it we showed exponential lower bound for CP+∀red.

# Decision lists (Rivest 1987)

• A decision list is a list D of pairs

$$(t_1, v_1), \ldots, (t_r, v_r)$$

where each  $t_i$  is a term (conjunction,  $\wedge$ , of literals), and

- $v_i$  is a value in  $\{0,1\}$ , and
- The last term  $t_r$  is the constant term **true** (i.e., the empty term). The length of D is r.

# Decision lists (Rivest 1987)

- A decision list D defines a Boolean function as follows:
  - For any assignment  $\alpha$ ,  $D(\alpha)$  is defined to be equal to  $v_j$  where j is the least index such that  $t_j|_{\alpha}=1$ .
  - Such an item always exists, since the last term always evaluates to 1.

# LTF-decision lists (Marchand and Golea 1993)

- In LTF-decision lists, instead of terms one uses linear threshold functions.
- Linear threshold functions are of the form:

$$\sum a_i x_i \geq t,$$

where  $a_i$  and t are integers (real number also allowed, but we do not need this.)

### Inner Product Function and LTF-decision Lists lower bound

 Inner product function computes Inner product (mod 2) of two Boolean vectors. That is,

$$\forall x, y \in \{0,1\}^n$$
,  $\mathsf{IP}(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } \sum_i x_i y_i \equiv 1 \pmod{2} \\ 0 & \text{otherwise} \end{array} \right.$ 

#### Theorem (Turán and Vatan 1997)

Every LTF-decision lists computing Inner Product (mod 2) function has length greater than  $2^{n/2} - 1$ .

## Lower Bounds via Strategy Extraction

- Consider the formula based on *IP*: Q- $IP \equiv \exists \vec{x} \forall z$ .  $[IP(\vec{x}) \neq z]$
- Clearly the only winning strategy for the universal variable z is  $(z \leftarrow IP(\vec{x}))$ .
- We can easily encode the above formula as a short QBF.
- If the formula has a CP+ $\forall$ red proof of length I (number of inequalities) then by strategy extraction we can extract LTF-decision list of length I, which is a winning strategy for z, and hence computing  $IP(\vec{x})$ . It follows that I must be exponential.



### Outline

- Resolution Proof System
- Cutting Planes Proof System
- Simulation
- Quantified Boolean Formulas (QBFs) Proof Systems
- **6** New QBF Proof System based on Cutting Planes: CP+∀red
- 6 Relative Power of CP+∀red with respect to other QBF Proof Systems
- Lower Bounds on CP+∀red via Strategy Extraction
- 8 Lower Bounds for CP+∀red via Feasible Interpolation



# Hard Formula: clique-co-clique formula

- We show that the clique-co-clique formula (Beyersdorff, Chew, Mahajan, and S.; 2015) is hard for CP+∀red. The formula encodes that the given graph on *n* vertices both has and does not have a *k* clique.
- Consider the formula (not in prenex form).

$$\exists \vec{p} \Big[ \exists \vec{q}.$$
  $A(\vec{p}, \vec{q})$ 

Encodes that the graph given by  $\vec{p}$  has a clique of size k

$$\forall \vec{r} \exists \vec{t}.$$
  $B(\vec{p}, \vec{r}, \vec{t})$ 

Encodes that the nodes specified by  $\vec{r}$  fail to form a k clique in the graph  $\vec{p}$ 



# Hard Formula: clique-co-clique formula

$$\exists \vec{p} \Big[ \underbrace{\exists \vec{q}. \ A(\vec{p}, \vec{q})}_{\text{Is true if the graph given by } \vec{p} \text{ has a clique of size } k} \Big]$$
Is true if the graph given by  $\vec{p}$  has no  $k$  clique

- Here variables  $\vec{p}, \vec{q}, \vec{r}$ , and  $\vec{t}$  are disjoint.
- So we have the following QBF in closed prenex form.

$$\exists \vec{p} \exists \vec{q} \forall \vec{r} \exists \vec{t}. \ \left[ A(\vec{p}, \vec{q}) \land B(\vec{p}, \vec{r}, \vec{t}) \right]$$



 $F = \exists p \exists q \forall r \exists t. [A(p,q) \land B(p, r, t)]$ If p occurs positively in A(p,q) part then **Exract** π Monotone Real Circuit Any CP+∀red p variables as input

proof  $\pi$  of F

 $F = \exists p \exists q \forall r \exists t. [A(p,q) \land B(p, r, t)]$ If p occurs positively in A(p,q) part then



Such that:

Size of C is polynomial in the length (number of linear inqualities) of  $\pi$ ,



$$F = \exists p \exists q \forall r \exists t. [A(p,q) \land B(p, r, t)]$$





On any assignment a to the p variables

Clearly, C is solving the k-clique problem for the given graph. So for some appropriate k, the circuit C and therefore the proof  $\pi$  must be of exponential length (Pavel Pudlák; 1997).



Thank you.