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Resolution Proof System
®00

Resolution

Introduced by Blake in 1937.

Resolution is a proof system for proving that boolean formulas
in a CNF form are unsatisfiable.

The only inference rule in resolution is:

Cvx DV-—x
cvD

@ CNF formula F € UNSAT = F has a resolution proof
(completeness).

A CNF formula F has a resolution proof — F € UNSAT
(Soundness).
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Resolution Proof System
oceo

Resolution Proof
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Resolution Proof System
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Resolution Proof

o Let F ={GC,..., C} be an unsatisfiable formula over n
variables.
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Resolution Proof System
oceo

Resolution Proof

o Let F ={GC,..., C} be an unsatisfiable formula over n
variables.

@ A resolution proof of F € UNSAT is a sequence of clauses
m ={D,...,D:} such that

o The last clause D; is the empty clause [.

o Each clause D, is either one of the initial clauses or is derived
from some clause D, D, with m, n < g using the resolution
rule.
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Resolution Proof System
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Resolution Proof

o Let F ={GC,..., C} be an unsatisfiable formula over n
variables.

@ A resolution proof of F € UNSAT is a sequence of clauses
m ={D,...,D:} such that

o The last clause D; is the empty clause [.

o Each clause D, is either one of the initial clauses or is derived
from some clause D, D, with m, n < g using the resolution
rule.

o If we store pointers from each D,,, D, to Dg then we actually
get a DAG G,;. We call G, proof graph associated with .

o If G; is a tree then 7 is called a tree-like resolution proof of F.
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Resolution Proof System
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Some Examples

@ Consider the following unsatisfiable formula on two variables:
(X VY)A(=x Vy) A(xV=y) A(=x Vo).
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Cutting Planes Proof System
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Cutting Planes (CP) Proof System

@ Introduced by Cook, Coullard, and Turan in 1987 for
unsatisfiable CNF formula.

o Cutting planes deals with linear inequalities, not with clauses.

e CNF formula F is first encoded as a set of inequalities R(F).
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Cutting Planes Proof System
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Encoding F into R(F)

Clause C = x3 V—x2 V x3 is encoded as x1 + (1 — xp) + x3 > 1.

(]

Clearly any Boolean assignment « satisfies C iff a satisfies
R(C).

Given, F=G A--- A Cp.

R(F) ={R(CG1),...,R(Cpy)} and the inequalities

x > 1,—x > —1 V variables x, which we called Boolean
axioms.

Boolean axioms force x € {0, 1}.
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Cutting Planes Proof System
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CP Proof

e Let R(F) be a set of inconsistent linear inequalities .

@ A CP refutation of R(F) is a sequence of inequalities
m=I,b,..., I such that:

e The last inequality ;, = 0 > C, for some positive integer C, and

o Each inequality /; either belongs to R(F) (recall that R(F)
also include the Boolean axioms), or,

o /; is derived from some earlier inequalities in the sequence via
one of the inference rules (i.e., Add, Multiply, or divide).
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Cutting Planes Proof System
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CP Proof

Add: from Z x> C and Z dixi > D derive

k k
> (ck + di)x = C+ D.
k
Multiply: from Z cexi > C derive chkxk > dC, where
k K
deZt.

Divide: from Ek: ckxx > C derive Ek: %kxk > [S-‘ where

d € Z* divides each c.
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Cutting Planes Proof System
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Examples

@ Consider the CNF formula:
(xVY)A(=xVy)AxV=ay)A(—xV-y).

@ We have the following linear inequalities:

x+y>1,

(1-x)+y>1,

x+(1-y)>1,and

(1-=x)4+(1—y)>1encoding it.

We also have Boolean axioms.
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Cutting Planes Proof System
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CP Proof Example

x 4+ y > 1axioms
(I-x) + y > 1 axioms
1 4+ 2y > 2 after addition
2y > 1 after rechange
y > 1 after division
x + (1—y) > 1axioms
(1-x) + (1-y) > 1 axioms
1 + 2(1—-y) > 2 after addition
2(1—y) > 1 after rechange
(1—y) > 1 after division

e Now add inequalities y > 1 and (1 — y) > 1 to derive 0 > 1.
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Simulation
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f» Simulates f

X € L= UNSAT

P, is a proof in the system
f thatx € L
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Simulation
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f» Simulates f

X € L= UNSAT X € L=UNSAT

3 a function g

g transforms proof
P, to proof P,

P, is a proof in the system P, is a proof in the system
f thatx € L f,thatx € L

[P, | <= poly(IP,|)
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Simulation
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f» p-simulates f;

X € L= UNSAT X € L=UNSAT

3 a function g

g transforms proof
P, to proof P,

P, is a proof in the system P, is a proof in the system
f thatx € L f,thatx € L
[P, | <= poly(IP,|)

In addition, if g is poly time computable then
we say that f, p-simulates f,.
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Simulation
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f» cannot simulate f;

@ Intuitively, > cannot simulate f; if there exists a family of
polynomial sized formulas F,, such that,
— F,, has short proof in f; but,
— Requires exponential sized proofs in the system
H.
@ If f; cannot simulate f> and £, cannot simulate fi then the
proof systems f; and f, are incomparable.
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Simulation
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Resolution vs Cutting Planes

e Cutting Planes p-simulates Resolution ((Cook, Coullard, and
Turdn 1987).

@ Resolution cannot simulate Cutting Planes (witness family
PHP,: based on pigeonhole principle).
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Quantified Boolean Formulas (QBFs) Proof Systems
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Quantified Boolean Formulas (QBFs)

@ Consider a false QBF formula
Q1X1... Q,‘X,‘...QJ'XJ'... Qan. F,

where F is a quantifier free CNF formula over variables
X1,...,Xn, €ach Q € {3,V}.

e We say x; is on left of x; or x; is before x;.

@ X, is the innermost variable (rightmost variable).

@ Several Resolution based proof system have been developed
for false QBFs. For example Q-Res, QU-Res and so on.
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Quantified Boolean Formulas (QBFs) Proof Systems
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- Definition

Q-Res = resolution + V-reduction [Kleine Biining, Karpinski,
and Flogel; 1995].

Q-Res proof system proofs the falseness of QBF formulas.
Q-Res has two inference rules:
o Resolution rule: W, where x is existential literal and
C V D is not a tautology.

e V-reduction: % where x is universal variable, and all

existential variable in C are before x in the prenex of the given
QBF formula.

If the resolution rule is also permitted on universal variables,
then we get QU-Res proof systems (Allen Van Gelder; 2012).
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Quantified Boolean Formulas (QBFs) Proof Systems
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Expansion Based QBF Resolution Proof System

@ There are two main paradigms in QBF solving: Expansion
based solving and CDCL solving.

@ An example of CDCL based QBF proof system is Q-Res
(which we have seen).

@ An example of expansion based QBF proof system is
VExp-+Res [Janota and Marques-Silva; 2013].
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© New QBF Proof System based on Cutting Planes: CP-+Vred
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CP+Vred Proof System

@ We introduced a new proof systems for false QBFs based on
Cutting Planes.

CP+Vred = Cutting Planes + V-Red Rules.

Like Cutting Planes, CP+Vred works with linear inequalities.
Given a false QBF F = Q1x1... 9px,. F, where
F=CAN--ACp.

Encode it as ¢ = Q1x1 ... QpXxp. GF, Where
or ={R(C1),...,R(Cyn)} UB, B is the set of Boolean
axioms.

o Clearly F is false iff ¢ is false.
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CP-+Vred Refutations

@ A CP+Vred proof 7 of ¢ (and therefore of F) is a quantified
sequence of inequalities, that is

o m=Q1x1...9nXpn. [h,..., ;] where, the last inequality
I, =0 > C, for some positive constant C. For every
Jjed{l,...,1},

o Ij € ¢ (recall that ¢f also includes the Boolean axioms), or

o ; is derived from the earlier inequalities in the sequence via
Add, Multiply, Divide (same as in Cutting Planes proof
system), or V-Red rule.
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CP-+Vred Refutations

@ V-Red rule: From Z Ckxi + hx; > C derive

ke[n\{i}
Z cexy > C if h > 0;
ke[n\{i}
Y axk=C—h ifh<O0.
ke[n\{i}

@ This rule can be used provided variable x; is universal, and
provided all existential variables y with nonzero coefficients in
the hypothesis should come before x;. (That is, if x; is
existential and ¢; # 0, then j < i.

@ Observe that when h > 0, we are replacing x; by 0, and when
h < 0, we are replacing x; by 1. We say that the universal
variable x; has been reduced.
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CP+Vred is Complete and Sound for false QBFs

o F is false QBF = F (its encoding) has a CP+Vred
refutation.

— Proved by showing that CP+Vred p-simulates
QU-Res which is known to be complete for false
QBFs.
@ There is a CP+Vred refutation of F (its encoding) = F is
a false QBF.

— Because the inference rules are sound.
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Outline

@ Relative Power of CP+Vred with respect to other QBF Proof
Systems
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CP+Vred is above QU-Res and below Frege+Vred but

Incomparable with expansion-based calculi

Clique-co-clique easy

Clique-co-clique hard
Q-IP hard ( CP+Vred
QMAJORITY easy

QMAJORITY hard
T KBKF(t) easy
Q-IP easy ‘,"‘
Q KBKF(t) hard
VExp+Res } -------- [ Q-Res [ QMAJORITY hard
®_hard ® easy

— Strictly stronger
------ Incomparable
New Results are in Bold Letters
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@ Lower Bounds on CP+Vred via Strategy Extraction
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Strategy Extraction

@ 9i1x1...9nx,. F can be seen as a game between universal
(V) and existential (3) players.

@ A strategy for any universal variable u is a function from all
the variables before u to {0,1}.

o A QBF F is false iff there exists a winning strategy for the
universal player.

@ A QBF proof system has a strategy extraction property for a
particular circuit size C whenever we can efficiently extract
from every refutation m of a QBF formula F a winning
strategy for the universal player in the circuit class C.
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Strategy Extraction for CP+Vred

@ We have shown that from CP-+Vred proof of length / (number
of inequalities), we can extract a winning strategy for the
universal player as an LTF-decision list of length /. Using it we
showed exponential lower bound for CP+Vred.
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Decision lists (Rivest 1987)

@ A decision list is a list D of pairs

(t17 V1)7 . ‘7(tr7 VI’)

where each t; is a term (conjunction, A, of literals), and
@ v; is a value in {0,1}, and

@ The last term t, is the constant term true (i.e., the empty
term). The length of D is r.
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Decision lists (Rivest 1987)

@ A decision list D defines a Boolean function as follows:

— For any assignment «, D(«) is defined to be
equal to v; where j is the least index such that
tj‘a =1.

— Such an item always exists, since the last term
always evaluates to 1.
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LTF-decision lists (Marchand and Golea 1993)

@ In LTF-decision lists, instead of terms one uses linear
threshold functions.

@ Linear threshold functions are of the form:

Z aixj > t,

where a; and t are integers (real number also allowed, but we
do not need this.)
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Inner Product Function and LTF-decision Lists lower bound

@ Inner product function computes Inner product (mod 2) of
two Boolean vectors. That is,

. 1 if Y, xyi=1 (mod 2
Vx,y € {0,1}", IP(x,y) = { 0 ot}%rwi;/e ( )

Theorem (Turan and Vatan 1997)

Every LTF-decision lists computing Inner Product (mod 2)
function has length greater than 2"/? — 1.
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Lower Bounds via Strategy Extraction

Consider the formula based on /P:

Q-1P = 3xVz. [IP(X) # Z]

Clearly the only winning strategy for the universal
variable z is (z + IP(X)).

We can easily encode the above formula as a short
QBF.

If the formula has a CP+-Vred proof of length /
(number of inequalities) then by strategy extraction
we can extract LTF-decision list of length /, which is
a winning strategy for z, and hence computing /IP(X).
It follows that / must be exponential.
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© Lower Bounds for CP-+Vred via Feasible Interpolation
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Hard Formula: clique-co-clique formula

@ We show that the clique-co-clique formula ( Beyersdorff,
Chew, Mahajan, and S.; 2015) is hard for CP+Vred. The
formula encodes that the given graph on n vertices both has
and does not have a k clique.

o Consider the formula (not in prenex form).

Ip [Hq- A(P, 4) A
Encodes that the graph given by p has a clique of size k

VFaL. B(p, 7. 1)

Encodes that the nodes specified by 7 fail to form a k clique in the graph p
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Hard Formula: clique-co-clique formula

3] 3. A(5. q) A

~~

Is true if the graph given by p has a clique of size k
i sprd |

Is true if the graph given by p has no k clique

o Here variables g, g, 7, and t are disjoint.

@ So we have the following QBF in closed prenex form.
3F3GVAE. [A(5,) A B(B, 7, D)|
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Proof Idea

Beyersdorff, Chew, Mahajan, Shukla

F=3pdqVrat [A(p.a) A B(p, 1, 1)]
If p occurs positively in A(p,q) part then

Exract
 —
T C
Monotone
Real Circuit
Any CP+Vred * * * f * * *
proof Tt of F p variables as input
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Proof Idea

F=dpdq Vrat. [A(p.a) A B(p, 1, 1)]
If p occurs positively in A(p,q) part then

Exract
D —
T C
Monotone
Real Circuit

Any CP+Vred EEEEEE

proof Tt of F p variables as input

Such that:
Size of C is polynomial in the length
(number of linear inqualities) of T,
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Proof Idea

F=3p 3q Vrat. [A(p.q) A B(p, 1, 1)]

A(a,q) is false Vr3t B(a,rt) is false
R 17

Exract

Monotone
Real Circuit

On any assignment a to the p variables
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Proof Idea

A(a,q) is false Vrat B(a,r,t) is false
AN 17

Exract
M —>
C
Monotone
Real Circuit

On any assignment a to the p variables

Clearly, C is solving the k-clique
problem for the given graph.

So for some appropriate k, the circuit C
and therefore the proof T must be of
exponential length (Pavel Pudlak; 1997).
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Thank you. ]
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