Are Short Proofs Narrow? QBF Resolution is not Simple

Olaf Beyersdorff 1 Leroy Chew 1 Meena Mahajan 2 Anil Shukla 2

 $^{\rm 1}$ School of Computing, University of Leeds, UK $^{\rm 2}$ Institute of Mathematical Sciences Chennai, India

STACS 2016 Orléans, France February 20th, 2016

Outline

- Resolution Proof System
- QBF Resolution
- 3 Size-width and Space-width Relation Fails in Q-Resolution
- Some Positive Results
- Proof Sketch of our Main Theorem
- 6 Conclusion

Outline

- Resolution Proof System
- QBF Resolution
- 3 Size-width and Space-width Relation Fails in Q-Resolution
- 4 Some Positive Results
- 5 Proof Sketch of our Main Theorem
- 6 Conclusion

Resolution

- Introduced by Blake in 1937.
- Resolution is a proof system for proving that boolean formulas in a CNF form are unsatisfiable.
- The only inference rule in resolution is:

$$\frac{C \vee x \quad D \vee \neg x}{C \vee D}$$

• CNF formula F is in UNSAT \iff F has a **resolution proof**.

000000000

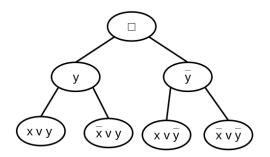
- Let $F = \{C_1, \dots, C_k\}$ be an unsatisfiable formula over n variables.
- A resolution proof of $F \in UNSAT$ is a sequence of clauses $\pi = \{D_1, \dots, D_t\}$ such that
 - The last clause D_t is the empty clause \square .
 - Each clause D_a is either one of the initial clauses or is derived from some clause D_m , D_n with m, n < q using the resolution rule.
- If we store pointers from each D_m , D_n to D_q then we actually get a DAG G_{π} . We call G_{π} , proof graph associated with π .
- If G_{π} is a tree then π is called a tree-like resolution proof of F.

Some Examples

- Consider an unsatisfiable CNF formula on one variable: $x \wedge \neg x$. Clearly resolution derives the empty clause $\left(\frac{x}{\Box}\right)$.
- Consider the following unsatisfiable formula on two variables: $(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y)$.

Consider an unsatisfiable CNF formula on one variable:

- $x \wedge \neg x$. Clearly resolution derives the empty clause $\left(\frac{x}{\Box}\right)$.
- Consider the following unsatisfiable formula on two variables: $(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y).$



Example 3

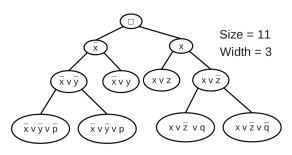
000000000

Consider the CNF formula on five variables: $F = \{(\neg x \lor \neg y \lor \neg$ $\neg p$), $(\neg x \lor \neg y \lor p)$, $(\neg x \lor y)$, $(x \lor z)$, $(x \lor \neg z \lor q)$, $(x \lor \neg z \lor \neg q)$ }.

Example 3

000000000

Consider the CNF formula on five variables: $F = \{(\neg x \lor \neg y \lor \neg$ $\neg p$), $(\neg x \lor \neg y \lor p)$, $(\neg x \lor y)$, $(x \lor z)$, $(x \lor \neg z \lor q)$, $(x \lor \neg z \lor \neg q)$ }.



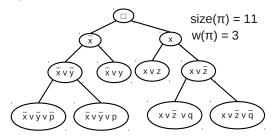
Proof graph of F

0000000000

 $S(\vdash F) = min \{size(\pi) : \pi \text{ resolution proof of } F\}$

 $w(\vdash F) = min \{w(\pi) : \pi \text{ resolution proof of } F\}$

 $S_{\tau}(\vdash F) = \min \{ size(\pi) : \pi \text{ tree-like res proof of } F \}$



Size Lower Bound Techniques for Resolution

- Feasible Interpolation [Krajícek, J. Symbolic Logic 1997, Pudlák, J. Symbolic Logic 1997]
- Size-Width Relation [Ben-Sasson and Wigderson, J. ACM 2001]
- <u>。</u> . . .

Size Lower Bound Techniques for Resolution

- Feasible Interpolation [Krajícek, J. Symbolic Logic 1997, Pudlák, J. Symbolic Logic 1997]
- Size-Width Relation [Ben-Sasson and Wigderson, J. ACM 2001]
- <u>。</u> . . .

Short Proofs are Narrow — Resolution Made Simple

Theorem (Ben-Sasson and Wigderson, J. ACM 2001)

For all unsatisfiable CNFs F in n variables the following holds:

•
$$S_T(\vdash F) \ge 2^{w(\vdash F) - w(F)}$$
.

•
$$S(\vdash F) = \exp\left(\Omega\left(\frac{(w(\vdash F) - w(F))^2}{n}\right)\right)$$
.

• Thus for CNF F with n variables and constant initial width, proving $w(\vdash F) = \Omega(n)$ proves tree-like size lower bounds.

Application of Size-Width Relation

- One can achieve size lower bound from width lower bound.
- Infact almost all existing size lower bound results, for example;
 - PHP (Haken, Theoretical Computer Science, 1985),
 - Tseitin Tautologies (Tseintin; Constructive Mathematics and Mathematical Logic, 1968),
 - Random k-CNF formulas (Urquhart; J. ACM, 1987, Beame, Karp, Pitassi, and Saks; STOC, 1998, etc.)

can be obtained via width lower bound.

• New size lower bounds acheived, for example restricted versions of PHP (Ben-Sasson and Wigderson; J. ACM, 2001).

Complexity Measure: Clause Space

000000000

- The concept of resolution clause space was first introduced by Esteban and Torán 2001.
- Intuitively, resolution clause space of an unsatisfiable CNF formula is the minimum number of clauses that have to be kept simultaneously in memory in order to refute the formula.
- Let $CSpace(\vdash F) = Minimum$ clause space requirements to refute F.

Theorem (Atserias and Dalmau 2008)

For all unsatisfiable CNFs F the following relation holds: $w(\vdash F) \leq CSpace(\vdash F) + w(F) - 1$

Outline

- Resolution Proof System
- QBF Resolution
- Size-width and Space-width Relation Fails in Q-Resolution
- 4 Some Positive Results
- 5 Proof Sketch of our Main Theorem
- 6 Conclusion

Introduction

- QBFs are propositional formulas with Boolean quantifiers ranging over 0, 1.
- Consider the QBF $\mathcal{F} = \mathcal{Q}_1 x_1 \mathcal{Q}_2 x_2 \dots \mathcal{Q}_n x_n . F$, where $\mathcal{Q}_i \in \{\exists, \forall\}$ and F is a CNF formula over variables x_1, \dots, x_n .
- Proof systems based on resolution for QBF formulas are called QBF resolution.
- We define a QBF resolution (Q-resolution) and show that size-width, and space-width relation fails for it.

Q-Res: Definition

- Q-Res = resolution + \forall -reduction [Kleine Büning, Karpinski, and Flögel; Information and Computation, 1995].
- Q-Res proof system proofs the falseness of QBF formulas.
- Q-Res has two inference rules:
 - **Resolution rule**: $\frac{C \lor x}{C \lor D}$, where x is existential literal and $C \lor D$ is not a tautology.
 - \forall -reduction: $\frac{C \vee x}{C}$, where x is universal variable, and all existential variable in C are before x in the prenex of the given QBF formula.

Q-Res Proof

- Let $\mathcal{F} = \mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n F$ be a false QBF formula.
- A Q-Res proof for \mathcal{F} is a sequence of clause $\pi = C_1, C_2, \dots, C_m$ such that:
 - C_m is the empty clause.
 - Each C_i is either from F <u>or</u> is derived from previous clauses using one of the above inference rules.
- Once again we have proof graph G_{π} .
- If G_{π} is a tree, then π is called a tree-like Q-Res proof for \mathcal{F} .

Examples 1

Consider the false formula

$$\mathcal{F} = \exists e \forall u. (e \lor u) \land (\neg e \lor \neg u)$$

 The Q-Res proofs first derive the clause (e) and (¬e) by ∀-reduction and then apply resolution rule to derive the empty clause.

Examples 2

Consider the false formula

$$\mathcal{F} = \forall u_1 \exists e_1 \forall u_2 \exists e_2.$$

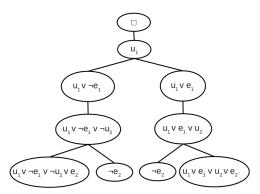
$$(u_1 \lor e_1 \lor u_2 \lor e_2) \land (u_1 \lor \neg e_1 \lor \neg u_2 \lor e_2) \land (\neg e_2)$$

Examples 2

Consider the false formula

$$\mathcal{F} = \forall u_1 \exists e_1 \forall u_2 \exists e_2.$$

$$(u_1 \lor e_1 \lor u_2 \lor e_2) \land (u_1 \lor \neg e_1 \lor \neg u_2 \lor e_2) \land (\neg e_2)$$



- Keep the definition of size, width and space same as that of resolution proof system.
- That is, $w(\mathcal{F}) = \max\{w(C) : C \in F\}$,
- Let $S(|_{\Omega,Res}\mathcal{F}) = \min\{size(\pi) : \pi|_{\Omega,Res}\mathcal{F}\}.$
- $w(|_{\Omega_{-Res}} \mathcal{F}) = \min\{w(\pi) : \pi|_{\Omega_{-Res}} \mathcal{F}\}.$

Outline

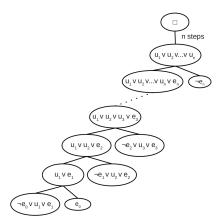
- Resolution Proof System
- QBF Resolution
- 3 Size-width and Space-width Relation Fails in Q-Resolution
- 4 Some Positive Results
- 5 Proof Sketch of our Main Theorem
- 6 Conclusion

Size-width Relation Fails

Consider the following false QBF formula:

$$\mathcal{F}_n = \forall u_1 \dots u_n \exists e_0 \exists e_1 \dots e_n . (e_0) \land \bigwedge_{i \in [n]} (\neg e_{i-1} \lor u_i \lor e_i) \land (\neg e_n)$$

$$\mathcal{F}_n = \forall u_1 \dots u_n \exists e_0 \exists e_1 \dots e_n . (e_0) \land \bigwedge_{i \in [n]} (\neg e_{i-1} \lor u_i \lor e_i) \land (\neg e_n)$$



- Above examples illustrates that it is easy to accumulate universal variables in one clause which makes the width large but has a short proofs.
- Natural question: just count existential variables and then ask about size-width relation.
- $w_{\exists}(C)$ = number of existential literals in C.
- $w_{\exists}(|_{\Omega \text{-Res}} \mathcal{F}) = \min\{w_{\exists}(\pi) : \pi|_{\Omega \text{-Res}} \mathcal{F}\}.$

Size-existential-width and Space-existential-width Relation Fails in tree-like Q-Res

Theorem

There exists a false QBF formula \mathcal{F}_n over $O(n^2)$ variables such that:

- $S_T(|_{\overline{Q-Res}} \mathcal{F}_n) = n^{O(1)}$,
- $w_{\exists}(\mathcal{F}_n)=3$,
- $w_{\exists}(|_{\overline{Q-Res}}\mathcal{F}_n) = \Omega(n)$.
- $CSpace(|_{\overline{Q-Res}} \mathcal{F}_n) = O(1).$
- Note that \mathcal{F}_n has $O(n^2)$ variables, they do not rule out size-existential-width relation in general Q-Res proof system.

Size-existential-width Relation Fails in Q-Res

$\mathsf{Theorem}$

There exists a false QBF formula ϕ_n over O(n) variables such that:

- $S(|_{O-Res} \phi_n) = n^{O(1)}$,
- $w_{\exists}(\phi_n) = 3$,
- $w_{\exists}(|_{\Omega Res} \phi_n) = \Omega(n)$.
- ϕ_n is known to be hard for tree-like Q-Res, so it can not be used to disprove size-existential-width relation in tree-like Q-Res.

Outline

- Resolution Proof System
- QBF Resolution
- 3 Size-width and Space-width Relation Fails in Q-Resolution
- Some Positive Results
- 5 Proof Sketch of our Main Theorem
- 6 Conclusion

Expansion Based QBF Resolution Proof System

- There are two main paradigms in QBF solving: Expansion based solving and CDCL solving.
- An example of CDCL based QBF proof system is Q-Res (which we have seen).
- An example of expansion based QBF proof system is ∀Exp+Res [Janota and Marques-Silva; SAT 2013].

Positive Results for tree-like ∀Exp+Res

Theorem

For all false QBFs \mathcal{F} , the following relations holds in tree-like $\forall Exp+Res$:

- $S_T\left(\left|_{\forall Exp+Res} \mathcal{F}\right) \ge 2^{w\left(\left|_{\forall Exp+Res} \mathcal{F}\right) w_{\exists}(\mathcal{F})\right)}$
- CSpace $\left(\left|_{\forall \mathsf{Exp}+\mathsf{Res}} \mathcal{F}\right) \geq w\left(\left|_{\forall \mathsf{Exp}+\mathsf{Res}} \mathcal{F}\right) w_{\exists}(\mathcal{F}) + 1.\right)$

- There exists a well known expansion based QBF proof system IR-calc, known to be exponentially stronger than $\forall Exp+Res$.
- We know that for any false QBF formula \mathcal{F} , $S_T(|_{\overline{\mathsf{IR-calc}}}\mathcal{F}) \leq 2S_T(|_{\overline{\mathsf{VFvp+Res}}}\mathcal{F})$ (by definitions).
- We show that the tree-like IR-calc and tree-like Q-Res are **equivalent** by showing the converse: for any false QBF \mathcal{F} we have $S_T(|_{\forall \mathsf{Fyp}+\mathsf{Res}}\mathcal{F}) \leq S_T(|_{\mathsf{IR-calc}}\mathcal{F})$.

Simplified Proof of the Following Thoerem

Theorem (Janota, Marques-silva, TCS, 2015)

For any false QBFs \mathcal{F} , the following hold:

$$S_T(|_{\forall Exp+Res} \mathcal{F}) \leq 3S_T(|_{O-Res} \mathcal{F})$$

Outline

- Resolution Proof System
- QBF Resolution
- Size-width and Space-width Relation Fails in Q-Resolution
- 4 Some Positive Results
- Proof Sketch of our Main Theorem
- **6** Conclusion

Proof Sketch of our Main Thoerem

Theorem

There exists a false QBF formula \mathcal{F}_n over $O(n^2)$ variables such that:

- $S_T(|_{Q-Res} \mathcal{F}_n) = n^{O(1)}$,
- $w_{\exists}(\mathcal{F}_n) = 3$,
- $w_{\exists}(|_{Q-Res}\mathcal{F}_n) = \Omega(n)$.
- $CSpace(|_{\overline{O-Res}} \mathcal{F}_n) = O(1).$

Proof Sketch

- First step: define the false QBF formula.
- The formula is based on Completion Principle [Janota and Marques-Silva; Theoretical Computer Science, 2015].

Completion Principle

- Consider two sets $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$,
- Depict their cross product $A \times B$ as in the table below.

a_1	 <i>a</i> ₁	a ₂	 <i>a</i> ₂	 	a _n	 a _n
b_1	 b _n	b_1	 b _n	 	b_1	 b _n

- Two player game.
- Round one: player 1 deletes exactly one cell from each column.
- Round two: player 2 chooses one of the two rows.
- Player 2 wins if the chosen row contains either the complete set *A* or the set *B*.

a_1	<i>a</i> ₁	a ₂	a ₂
b_1	b_2	b_1	b_2

• Round 1

×	a_1	a ₂	≫ ≨
b_1)×2	%	<i>b</i> ₂

Round 1

×	a_1	a ₂	≥ €
b_1)× <u>×</u>	%	<i>b</i> ₂

• Round 2: Player 2 wins by choosing either row 1 or row 2.

Round 1

Round 1

$$\begin{array}{c|ccccc} \nearrow \swarrow & \nearrow \swarrow & a_2 & \nearrow \swarrow \\ \hline b_1 & b_2 & \nearrow \swarrow & b_2 \end{array}$$

• Round 2: Player 2 wins by choosing row 2.

Completion Principle: Player 2 has a winning strategy

- If some a_i is missing in the top row, then entire B chunk below a_i is present in the bottom row. Player 2 chooses the bottom row.
- Otherwise, player 2 chooses the top row.

<i>a</i> ₁		<i>a</i> ₁	a ₂		<i>a</i> ₂	aį		a _n		an		
b_1		b_n b_1 \dots b_n b_j \dots b_1 \dots b_n										
1												
						$X_{i,j}$						

$b_1 \mid \dots \mid b_n \mid b_1 \mid \dots \mid b_n \mid b_n \mid b_1 \mid \dots \mid b_n $	a ₁	$a_1 \dots a_1 a_2 \dots a_2 a_i \dots a_n \dots a_n$												
	b_1													
$x_{i,j} = 0$														

a_1	$a_1 \dots a_1 a_2 \dots a_2 \cancel{\varkappa} \dots a_n \dots a_n$													
b_1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	$x_{i,i} = 1$													

z - 0	a_1						
2 — 0	b_1	 b_n	b_1	 b_n	 	b_1	 b_n

$$z=1$$
 $\begin{bmatrix} a_1 & \dots & a_1 & a_2 & \dots & a_2 & \dots & a_n & \dots & a_n \\ b_1 & \dots & b_n & b_1 & \dots & b_n & \dots & \dots & b_1 & \dots & b_n \end{bmatrix}$

- Boolean variables a_i, b_j , for $i, j \in [n]$ encodes that for the choosen values of all $x_{k,l}$ and the row choosen via z, at least one copy of a_i and b_i respectively is kept.
- For example, $x_{i,j} \wedge z \implies b_i$.
- We encode the false statement that player 1 has a winning strategy as a QBF formula.

Completion Principle

$$CR_{n} = \exists x_{1,1} \dots x_{n,n} \ \forall z \ \exists a_{1} \dots a_{n} \exists b_{1} \dots b_{n}.$$

$$(C_{i,j}) \qquad (x_{i,j} \lor z \lor a_{i}), \quad i,j \in [n]$$

$$(D_{i,j}) \qquad (\neg x_{i,j} \lor \neg z \lor b_{j}), \quad i,j \in [n]$$

$$(A) \qquad \bigvee_{i \in [n]} \neg a_{i}$$

$$(B) \qquad \bigvee_{i \in [n]} \neg b_{i}.$$

Note that the existential width of initial clauses (A) and (B) are n. We need constant initial width.

Completion Principle

$$CR'_{n} = \exists x_{1,1} \dots x_{n,n} \ \forall z \ \exists a_{1} \dots a_{n} \exists b_{1} \dots b_{n} \exists y_{0} \dots y_{n} \exists p_{0} \dots p_{n}.$$

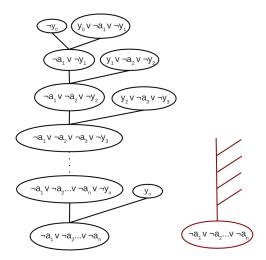
$$(C_{i,j}) \qquad (x_{i,j} \lor z \lor a_{i}), \qquad i,j \in [n] \qquad (1)$$

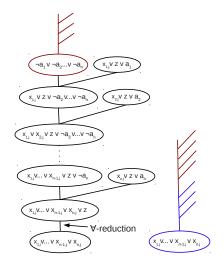
$$(D_{i,j}) \qquad (\neg x_{i,j} \vee \neg z \vee b_j), \qquad i,j \in [n]$$
 (2)

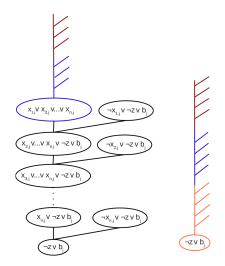
$$\neg y_0 \land \bigwedge_{i \in [n]} (y_{i-1} \lor \neg a_i \lor \neg y_i) \land y_n \tag{3}$$

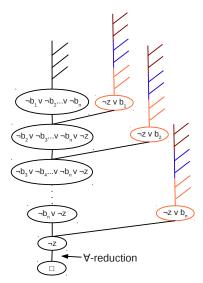
$$\neg p_0 \wedge \bigwedge_{i \in [n]} (p_{i-1} \vee \neg b_i \vee \neg p_i) \wedge p_n. \tag{4}$$

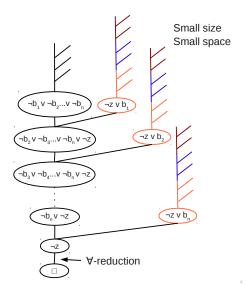
• Clearly $w(CR'_n) = 3$

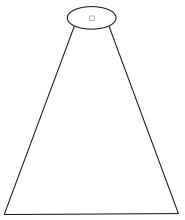




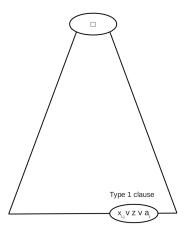




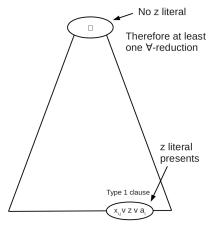




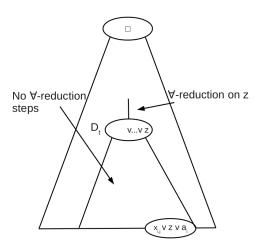
Consider any proof π of CR' $_{_{n}}$



At least one type 1 or type 2 clause

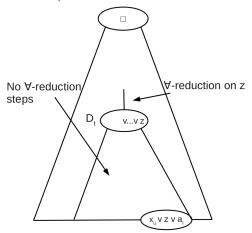


At least one type 1 or type 2 clause



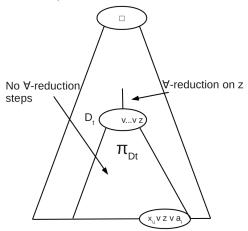
Type 1 clause

Claim: D, contains at least n existential literals

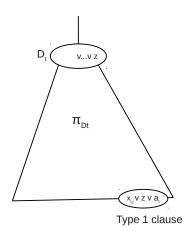


Type 1 clause

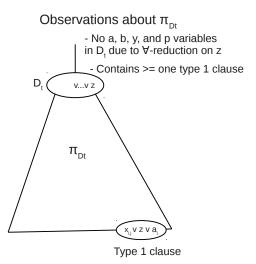
Claim: D, contains at least n existential literals

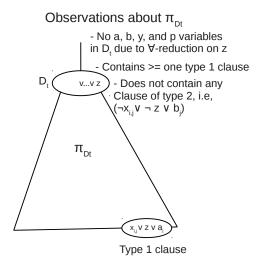


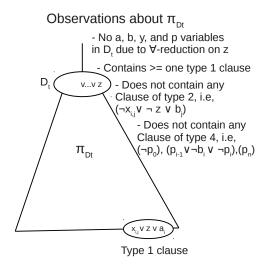
Type 1 clause

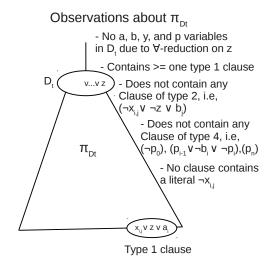


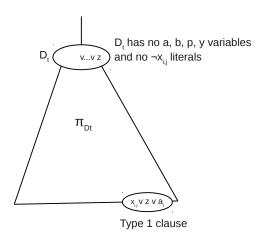
Observations about π_{rt} - No a, b, y, and p variables in D, due to ∀-reduction on z D. V...V Z π_{Dt} x,vzva Type 1 clause

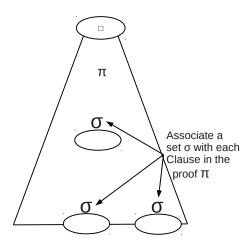






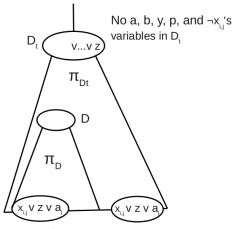




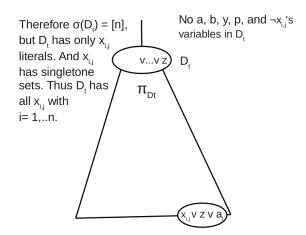


- Associate a set $\sigma(\ell)$ with each literal ℓ of CR'_n , such that the literals $x_{i,i}$'s gets a singleton set.
- To be precise $\sigma(x_{i,j}) = \{i\}$ and $\sigma(\neg x_{i,j}) = \{j\}$.
- Associated sets are always subsets of [n].
- Associate a set $\sigma(D) = \bigcup_{I \in D} \sigma(I)$ with each clause $D \in \pi$.

Claim: Every D such that π_D contains a type 1 clause has $\sigma(D) = [n]$



Note:
$$\sigma(x_{i,i}) = \{i\}$$



Outline

- Resolution Proof System
- QBF Resolution
- Size-width and Space-width Relation Fails in Q-Resolution
- 4 Some Positive Results
- 5 Proof Sketch of our Main Theorem
- 6 Conclusion

Conclusion

 Size-width and space-width relations fails in both tree-like Q-Res and Q-Res proof systems.

Conclusion

- Size-width and space-width relations fails in both tree-like Q-Res and Q-Res proof systems.
- Size-width and space-width relations holds in tree-like ∀Exp+Res.

Conclusion

- Size-width and space-width relations fails in both tree-like Q-Res and Q-Res proof systems.
- Size-width and space-width relations holds in tree-like ∀Exp+Res.
- New ideas and techniques are required for proving lower bounds in QBF resolution.

Thank you.

Questions?

• Now we define σ for each literal ℓ and proof the following claim:

Claim

Every clause D in π_{D_t} such that π_D contains a type-(1) clause has $\sigma(D) = [n]$.

σ which are needed for the discussion

$$\sigma(z) = \emptyset = \sigma(\neg z)$$

$$\forall i \in [n] \qquad \sigma(a_i) = [n] \setminus \{i\} = \{1, \dots, n\} \setminus \{i\}$$

$$\forall i \in [n] \qquad \sigma(x_{i,j}) = \sigma(\neg a_i) = \{i\}$$

$$\forall i \in [n] \qquad \sigma(\neg y_i) = [n] \setminus [i] = \{i+1, \dots, n\}$$

$$\forall i \in [n] \qquad \sigma(y_i) = [i] = \{1, \dots, i\}$$

$$\forall D \in \pi \qquad \sigma(D) = \bigcup_{i \in I} \sigma(I).$$

An important observation about σ

• For any clause C derived solely from Type (3) clauses, $\sigma(C) = [n]$.

Recall: $\neg y_0 \land \bigwedge_{i \in [n]} (y_{i-1} \lor \neg a_i \lor \neg y_i) \land y_n$ —Type (3) clauses.

• We prove by induction on the depth of descendants of Type (1) clauses in $\pi_{D_{\bullet}}$.

Base Case: Clause D is a Type (1) clause. Clearly $\sigma(D) = [n]$ by definition of σ .

Recall: $(x_{i,j} \lor z \lor a_i)$, $i, j \in [n]$ —Type (1) clauses.

Recall: $\sigma(x_{i,i}) = \{i\}, \sigma(z) = \emptyset$, and $\sigma(a_i) = [n] \setminus \{i\}$.

Proof of the Claim (Cont.)

Inductive Step: Let $\frac{(E \lor r) - (F \lor \neg r)}{D}$ (π_{D_t} has only resolution rule).

- Case 1. Both $(E \vee r)$ and $(F \vee \neg r)$ are descendants of Type (1) clause, and hence by induction hypothesis, we have $\sigma(E \vee r) = [n] = \sigma(F \vee \neg r)$.
- Case 2. Only one say, $(E \lor r)$ is a descendant of Type (1) clause, then we have $\sigma(E \lor r) = [n]$. But $(F \lor \neg r)$ belongs to π_{D_t} which has no Type (2), and Type (4) clauses. Thus $(F \lor \neg r)$ derives only from Type (3) clause. Hence $\sigma(F \lor \neg r) = [n]$.

- Therefore in both the cases we have $\sigma(E \vee r) = \sigma(F \vee \neg r) = [n].$
- we have $\sigma(E) \supseteq [n] \setminus \sigma(r)$ and $\sigma(F) \supseteq [n] \setminus \sigma(\neg r)$.
- Observe that the pivot variable r can be either \vec{a} or \vec{y} variables, hence $\sigma(r)$ and $\sigma(\neg r)$ are disjoint by definition.
- Hence $\sigma(E) \cup \sigma(F) = [n]$. And $\sigma(D) = \sigma(E) \cup \sigma(F) = [n]$ as claimed.