Extending Merge Resolution to a Family of QBF-Proof Systems

Sravanthi Chede Anil Shukla

Indian Institute of Technology Ropar

Pre-conference workshop FSTTCS
Milestones and Motifs in the Theory of Proofs,
Algebraic Computation, and Lower Bounds
IIT Gandhinagar
December 15, 2024

1/35

Quantified Boolean Formulas (QBFs)

- Propositional SAT problem: Given a propositional CNF formula F, determine whether F is satisfiable or not.
- If F is satisfiable, also output a satisfying assignment for it.
- Propositional SAT problem is NP-complete (Cook 1971, Levin 1973).

Quantified Boolean Formulas (QBFs)

- Propositional SAT problem: Given a propositional CNF formula *F*, determine whether *F* is satisfiable or not.
- If F is satisfiable, also output a satisfying assignment for it.
- Propositional SAT problem is NP-complete (Cook 1971, Levin 1973).
- QBFs extend propositional logic with Boolean quantifiers \exists and \forall .
- $\bullet \exists x. F \equiv F|_{x=0} \vee F|_{x=1}.$
- $\bullet \ \forall x.F \equiv F|_{x=0} \wedge F|_{x=1}.$

• $\phi \equiv (x \lor \neg y) \land (\neg x \lor y)$. (Propositional logic) ϕ is satisfiable when x = y: A satisfying assignment: x = 0, y = 0.

3/35

Anil Shukla MRes-R proof systems FSTTCS

- $\phi \equiv (x \lor \neg y) \land (\neg x \lor y)$. (Propositional logic) ϕ is satisfiable when x = y: A satisfying assignment: x = 0, y = 0.
- $\mathcal{F}_1 \equiv \exists x \forall y. (x \vee \neg y) \wedge (\neg x \vee y)$ (QBF) Is there exists a value of $x \in \{0,1\}$ such that for all values of $y \in \{0,1\}$ x = y? \mathcal{F}_1 is false.

Anil Shukla

- $\phi \equiv (x \lor \neg y) \land (\neg x \lor y)$. (Propositional logic) ϕ is satisfiable when x = y: A satisfying assignment: x = 0, y = 0.
- $\mathcal{F}_1 \equiv \exists x \forall y. (x \vee \neg y) \wedge (\neg x \vee y)$ (QBF) Is there exists a value of $x \in \{0,1\}$ such that for all values of $y \in \{0,1\}$ x = y? \mathcal{F}_1 is false.
- F₂ ≡ ∀x∃y.(x ∨ ¬y) ∧ (¬x ∨ y) (QBF)
 Observe, F₂ is true
 For all x, is there exists a y, such that x = y?

Anil Shukla

A model for

$$\mathcal{F}_2 \equiv \forall x \exists y. (x \vee \neg y) \wedge (\neg x \vee y)$$

Anil Shukla MRes- $\mathcal R$ proof systems FSTTCS

A model for

$$\mathcal{F}_2 \equiv \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$

A counter-model for $\mathcal{F}_1 \equiv \exists x \forall y. (x \lor \neg y) \land (\neg x \lor y)$

4/35

Anil Shukla MRes-R. proof systems FSTTCS

Quantified Boolean Formulas (QBFs)

- $\mathcal{F} = \mathcal{Q}.\phi = \mathcal{Q}_1 X_1 \mathcal{Q}_2 X_2 \dots \mathcal{Q}_k X_k .\phi(X_1, X_2, \dots, X_k)$ is a QBF, where
 - $Q_i \in \{\exists, \forall\}$ and $Q_i \neq Q_i$.
 - X_i are pairwise disjoint set of variables.
 - $\phi(X_1, X_2, \dots X_k)$ is a CNF formula.
 - If $Q_i = \exists$ (resp. $Q_i = \forall$), then all variables $x \in X_i$ is called existential (reps. universal) variables.

5 / 35

Anil Shukla MRes-R proof systems

Quantified Boolean Formulas (QBFs)

- $\mathcal{F}=\mathcal{Q}.\phi=\mathcal{Q}_1X_1\mathcal{Q}_2X_2\ldots\mathcal{Q}_kX_k.\phi(X_1,X_2,\ldots,X_k)$ is a QBF, where
 - $Q_i \in \{\exists, \forall\}$ and $Q_i \neq Q_j$.
 - X_i are pairwise disjoint set of variables.
 - $\phi(X_1, X_2, \dots X_k)$ is a CNF formula.
 - If $Q_i = \exists$ (resp. $Q_i = \forall$), then all variables $x \in X_i$ is called existential (reps. universal) variables.
 - If a variable $x \in X_i$ and $y \in X_j$, where i < j, then we say that x occurs to the left of y in the quantifier prefix (denoted $x \le_{\mathcal{Q}} y$), and y occurs to the right of x (denoted $y \ge_{\mathcal{Q}} x$).
 - For a universal variable u, let $L_{\mathcal{Q}}(u) = \{x \mid x \text{ is existential and } x \leq_{\mathcal{Q}} u\}$

Anil Shukla

QBF as a two player game

- A QBF $\mathcal{F} = \mathcal{Q}.\phi = \mathcal{Q}_1 X_1 \mathcal{Q}_2 X_2 \dots \mathcal{Q}_k X_k.\phi(X_1,X_2,\dots,X_k)$ can be seen as a game between two players: universal (\forall) and existential (\exists) .
- In the i^{th} step of the game, the player Q_i assigns values to the variables in X_i .

6/35

Anil Shukla MRes-R proof systems FSTTCS

QBF as a two player game

- A QBF $\mathcal{F} = \mathcal{Q}.\phi = \mathcal{Q}_1 X_1 \mathcal{Q}_2 X_2 \dots \mathcal{Q}_k X_k.\phi(X_1,X_2,\dots,X_k)$ can be seen as a game between two players: universal (\forall) and existential (\exists) .
- In the i^{th} step of the game, the player Q_i assigns values to the variables in X_i .
- ullet The existential player wins if ϕ evaluates to 1 under the assignment constructed in the game.
- The universal player wins if ϕ evaluates to 0.

Anil Shukla MRes- ${\mathcal R}$ proof systems

Winning strategy for QBF

- A strategy for a universal player u is a function from assignments to the variables in $L_{\mathcal{Q}}(u)$ to $\{0,1\}$.
- A strategy for a universal player is a winning strategy if using this strategy to assign values to universal variables, the ∀ player wins any possible game.

7/35

Winning strategy for QBF

- A strategy for a universal player u is a function from assignments to the variables in $L_{\mathcal{Q}}(u)$ to $\{0,1\}$.
- A strategy for a universal player is a winning strategy if using this strategy to assign values to universal variables, the ∀ player wins any possible game.
- A QBF is false, if and only if there exists a winning strategy for the universal player.
- Let the language FQBF be the set of all quantified Boolean formulas that are false.
- FQBF is PSPACE-complete [Meyer and Stockmeyer, 1971].

7/35

Example of false QBFs

Definition (Beyersdorff, Blinkhorn, Hinde 2019)

Equality (Eq(n)) is the following family of false QBFs:

$$\exists x_i, \forall u_i, \exists t_i. \left(\bigwedge_{i \in [n]} A_i \right) \land B$$

where

- $\bullet \ B = \exists \overline{t_i},$
- For $i \in [n]$, A_i contains the following two clauses:

$$(x_i \vee u_i \vee t_i) \quad (\overline{x_i} \vee \overline{u_i} \vee t_i)$$

Example of false QBFs

Definition (Beyersdorff, Blinkhorn, Hinde 2019)

Equality (Eq(n)) is the following family of false QBFs:

$$\exists x_i, \forall u_i, \exists t_i. \left(\bigwedge_{i \in [n]} A_i \right) \land B$$

where

- $\bullet \ B = \exists \overline{t_i},$
- For $i \in [n]$, A_i contains the following two clauses:

$$(x_i \vee u_i \vee t_i) \quad (\overline{x_i} \vee \overline{u_i} \vee t_i)$$

• Eq(n) has a winning strategy of the universal player: For each $i \in [n]$, $u_i = x_i$.

8/35

QBFs Proof Systems and their Simulation Hierarchy

Merge (MRes) Resolution (Beyersdorff, Blinkhorn, and Mahajan 2021)

- MRes is a sound and complete proof system for false QBFs.
- That is, for every QBF $\mathcal{F} \in \mathsf{FQBF}$, there exists an MRes proof π , proving the fact that $\mathcal{F} \in \mathsf{FQBF}$. (Completeness)
- If there exists an MRes proof for a QBF \mathcal{F} , then \mathcal{F} belongs to FQBF. (Soundness)
- MRes explicitly builds partial winning strategies into its proofs.
- MRes represents the strategies using a variant of binary decision diagrams called merge maps.

- Instead of merge maps, can we represent the winning strategies in the proof by some other representations?
- Can we design a general framework of proof systems for false QBFs, where one can use any complete representations for the winning strategies?
- A complete representation is the one in which every possible finite decision function can be represented.

- Instead of merge maps, can we represent the winning strategies in the proof by some other representations?
- Can we design a general framework of proof systems for false QBFs, where one can use any complete representations for the winning strategies?
- A complete representation is the one in which every possible finite decision function can be represented.
- We have positive answers to the above questions.
- ullet We introduced a family of proof systems MRes- \mathcal{R} , in which winning strategies are stored in any pre-fixed complete representation.

• Given false QBF $\mathcal{F} = \mathcal{Q}.\phi$ over existential variables X and universal variables U. An MRes- \mathcal{R} derivation of L_m is a sequence

$$\pi = L_1, L_2, \ldots, L_m$$
 of lines,

where each line $L_i = (C_i, \{H_i^u : u \in U\})$ is derived using one of the following rules:

• Axiom rule: There exists a clause $C \in \phi$, and C_i is the existential subclause of C, and for each $u \in U$, H_i^u is the strategy function mapping u to the falsifying u-literal of C. Examples:

$$C = (x_1 \vee \overline{u_1} \vee \overline{x_2}) \in \phi \qquad L_i = ((x_1 \vee \overline{x_2}), \{H_i^{u_1} = 1, H_i^{u_2} = *\})$$

$$C = (\overline{x_1} \vee u_2 \vee x_2) \in \phi \qquad L_i = ((\overline{x_1} \vee x_2), \{H_i^{u_1} = *, H_i^{u_2} = 0\})$$

Resolution rules:

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 0 0 ○

$$\pi = L_1, L_2, \ldots, L_m$$
.

• Resolution rules: Suppose the following lines have been derived:

$$L_a = \Big((C_a' \vee x), \{H_a^u : u \in U\} \Big); \qquad L_b = \Big((C_b' \vee \overline{x}), \{H_b^u : u \in U\} \Big)$$

Then L_i is derived as

$$\rightarrow C_i = (C'_a \lor C'_b)$$
. Existential variable x is called pivot.

13 / 35

Anil Shukla MRes- $\mathcal R$ proof systems FSTTCS

$$\pi = L_1, L_2, \ldots, L_m$$

• Resolution rules: Suppose the following lines have been derived:

$$L_a = \Big((C_a' \vee x), \{H_a^u : u \in U\} \Big); \qquad L_b = \Big((C_b' \vee \overline{x}), \{H_b^u : u \in U\} \Big)$$

Then L_i is derived as

- $\rightarrow C_i = (C'_a \lor C'_b)$. Existential variable x is called pivot.
- \rightarrow if $x <_{\mathcal{Q}} u$, then $H_i^u = H_b^u \stackrel{\times}{\bowtie} H_a^u$ [if-else branch] Meaning: if x = 1 take H_b^u else take H_a^u This is same as the **merge** step of MRes

13 / 35

Anil Shukla MRes- \mathcal{R} proof systems FSTTCS

$$\pi = L_1, L_2, \ldots, L_m$$

• Resolution rules: Suppose the following lines have been derived:

$$L_a = \Big((C_a' \vee x), \{H_a^u : u \in U\} \Big); \qquad L_b = \Big((C_b' \vee \overline{x}), \{H_b^u : u \in U\} \Big)$$

Then L_i is derived as

- \rightarrow $C_i = (C'_a \lor C'_b)$. Existential variable x is called pivot.
- o if $x <_{\mathcal{Q}} u$, then $H_i^u = H_b^u \stackrel{\times}{\bowtie} H_a^u$ [if-else branch] Meaning: if x = 1 take H_b^u else take H_a^u

This is same as the **merge** step of MRes

- ightarrow else if $x>_{\mathcal{Q}}u$, then $H_i^u=H_a^u\circ H_b^u$ [consistency + union step]
 - Here, MRes requires that the non-trivial strategies are isomorphic and picks one of them using the **Select** function.

$$\pi=L_1,L_2,\ldots,L_m.$$

• Resolution rules: Suppose the following lines have been derived:

$$L_a = \Big((C_a' \vee x), \{H_a^u \ : \ u \in U\} \Big); \qquad L_b = \Big((C_b' \vee \overline{x}), \{H_b^u \ : \ u \in U\} \Big)$$

Then L_i is derived as

- \rightarrow $C_i = (C'_a \lor C'_b)$. Existential variable x is called pivot.
- o if $x <_{\mathcal{Q}} u$, then $H_i^u = H_b^u \stackrel{\times}{\bowtie} H_a^u$ [if-else branch] Meaning: if x = 1 take H_b^u else take H_a^u

This is same as the **merge** step of MRes

- \rightarrow else if $x >_{\mathcal{Q}} u$, then $H_i^u = H_a^u \circ H_b^u$ [consistency + union step]
 - Here, MRes requires that the non-trivial strategies are isomorphic and picks one of them using the **Select** function.

 π is refuation of \mathcal{F} iff $C_m = \bot$

Anil Shukla MRes-R proof systems FSTTCS 13/35

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021))

Given two strategies H_1^u and H_2^u and an existential variable x, the if-else operation on these strategies for any complete assignments ε over variables in $L_{\mathcal{Q}}(u)$ gives the strategy H_3^u , denoted as $H_3^u = H_1^u \overset{\times}{\bowtie} H_2^u$ as follows:

$$H_3^u(\varepsilon) = \left\{ \begin{array}{lcl} H_1^u(\varepsilon) & : & \varepsilon(x) = 1 \\ H_2^u(\varepsilon) & : & \varepsilon(x) = 0 \end{array} \right.$$

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021))

Given two strategies H_1^u and H_2^u and an existential variable x, the if-else operation on these strategies for any complete assignments ε over variables in $L_{\mathcal{Q}}(u)$ gives the strategy H_3^u , denoted as $H_3^u = H_1^u \overset{\times}{\bowtie} H_2^u$ as follows:

$$H_3^u(\varepsilon) = \left\{ \begin{array}{lcl} H_1^u(\varepsilon) & : & \varepsilon(x) = 1 \\ H_2^u(\varepsilon) & : & \varepsilon(x) = 0 \end{array} \right.$$

Definition (Blinkhorn, Peitl, Slivovsky 2021)

Let ε and δ be two partial assignments over a set of variables Z. We say that ε and δ are **consistent**, denoted $\varepsilon \simeq \delta$, if for every $x \in Z$ for which $\varepsilon(x) \neq *$ and $\delta(x) \neq *$, we have $\varepsilon(x) = \delta(x)$.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021))

Given two strategies H_1^u and H_2^u and an existential variable x, the if-else operation on these strategies for any complete assignments ε over variables in $L_{\mathcal{Q}}(u)$ gives the strategy H_3^u , denoted as $H_3^u = H_1^u \overset{\times}{\bowtie} H_2^u$ as follows:

$$H_3^u(\varepsilon) = \left\{ \begin{array}{lcl} H_1^u(\varepsilon) & : & \varepsilon(x) = 1 \\ H_2^u(\varepsilon) & : & \varepsilon(x) = 0 \end{array} \right.$$

Definition (Blinkhorn, Peitl, Slivovsky 2021)

Let ε and δ be two partial assignments over a set of variables Z. We say that ε and δ are **consistent**, denoted $\varepsilon \simeq \delta$, if for every $x \in Z$ for which $\varepsilon(x) \neq *$ and $\delta(x) \neq *$, we have $\varepsilon(x) = \delta(x)$.

Example:
$$Z = \{x_1, x_2, x_3\}$$
, $\varepsilon : x_1 = 0, x_2 = *, x_3 = 1$, $\delta : x_1 = *, x_2 = 1, x_3 = 1$. Then $\varepsilon \simeq \delta$.

<□ > < Ē > 〈Ē > 〈Ē > 〉 틸 · '잇 < ⓒ

Definition (Blinkhorn, Peitl, Slivovsky 2021)

Two strategies H_1^u and H_2^u for a universal player u are **consistent** (denoted $H_1^u \simeq H_2^u$), if the u-assignments given by $H_1^u(\varepsilon)$ and $H_2^u(\varepsilon)$ are consistent for every possible $L_{\mathcal{Q}}(u)$ assignments.

- Treat (partial) assignments as a set of literals it satisfies.
- That is, let ε is a partial assignment over variables X. Then ε can be view as a set $\{x \mid \varepsilon(x) = 1\} \cup \{\overline{x} : \varepsilon(x) = 0\}$.

Definition (Blinkhorn, Peitl, Slivovsky 2021)

Two strategies H_1^u and H_2^u for a universal player u are **consistent** (denoted $H_1^u \simeq H_2^u$), if the u-assignments given by $H_1^u(\varepsilon)$ and $H_2^u(\varepsilon)$ are consistent for every possible $L_{\mathcal{O}}(u)$ assignments.

- Treat (partial) assignments as a set of literals it satisfies.
- That is, let ε is a partial assignment over variables X. Then ε can be view as a set $\{x \mid \varepsilon(x) = 1\} \cup \{\overline{x} : \varepsilon(x) = 0\}$.
- If two (partial) assignments ε and δ are consistent, the union of ε and δ (denoted $\varepsilon \circ \delta$) is just the union of their corresponding sets.
- ullet Since consistency checks are hard in general, the proof systems in MRes- $\mathcal R$ are not polynomial-time verifiable.

Soundness and Completeness of MRes- \mathcal{R}

Lemma (Soundness)

Let $(\emptyset, \{H^u : u \in U\})$ be a last line in an MRes- \mathcal{R} refutation of a QBF \mathcal{F} . Then the function computed by $\{H^u : u \in U\}$ form a countermodel for \mathcal{F} .

We show completeness of MRes- \mathcal{R} in two steps:

Lemma

MRes- \mathcal{M} (that is, MRes- \mathcal{R} using merge maps as representations) p-simulates MRes.

Since MRes is complete, MRes- ${\cal M}$ is also complete via the above Lemma.

Soundness and Completeness of MRes- \mathcal{R}

Lemma (Soundness)

Let $(\emptyset, \{H^u : u \in U\})$ be a last line in an MRes- \mathcal{R} refutation of a QBF \mathcal{F} . Then the function computed by $\{H^u : u \in U\}$ form a countermodel for \mathcal{F} .

We show completeness of MRes- \mathcal{R} in two steps:

Lemma

MRes- \mathcal{M} (that is, MRes- \mathcal{R} using merge maps as representations) p-simulates MRes.

Since MRes is complete, MRes- ${\cal M}$ is also complete via the above Lemma.

Lemma

Every MRes- $\mathcal M$ proof can be transformed into an MRes- $\mathcal R$ proof for any complete representation R in exponential time.

16/35

Regular MRes- \mathcal{R} is exponentially stronger than regular MRes

- Any MRes- \mathcal{R} proof π can be viewed as a directed acyclic graph G_{π} where edges goes from hypothesis to the conclusions.
- Let S be a subset of existential variables X of a QBF \mathcal{F} .
- An MRes- \mathcal{R} proof π is called S-regular if for every $x \in S$, there is no leaf-to-root path in G_{π} that uses x more than once as a pivot.
- An X-regular MRes- $\mathcal R$ refutation is simply a regular refutation.

17/35

Regular MRes- \mathcal{R} is exponentially stronger than regular MRes

- Any MRes- \mathcal{R} proof π can be viewed as a directed acyclic graph G_{π} where edges goes from hypothesis to the conclusions.
- Let S be a subset of existential variables X of a QBF \mathcal{F} .
- An MRes- \mathcal{R} proof π is called S-regular if for every $x \in S$, there is no leaf-to-root path in G_{π} that uses x more than once as a pivot.
- An X-regular MRes- $\mathcal R$ refutation is simply a regular refutation.
- There exists a family of false QBFs \mathcal{H} -Eq²(n)(R_0, R_1) (Squared-Equality-with-Holes) which are hard to refute for regular MRes but are easy to refute in regular MRes- \mathcal{R} .
- \mathcal{H} -Eq²(n)(R_0, R_1) is a variant of Eq²(n).

17/35

Anil Shukla MRes- ${\cal R}$ proof systems FSTTCS

Regular MRes- $\mathcal R$ is exponentially stronger than regular MRes

Definition (Eq $^2(n)$ (Beyersdorff, Blinkhorn, Mahajan 2021))

$$\exists x_i, \exists y_j \forall u_i, \forall v_j \exists t_{i,j}. \left(\bigwedge_{i,j \in [n]} A_{i,j} \right) \land B$$

- $B = \bigvee_{i,j \in [n]} \overline{t_{i,j}}$
- For $i, j \in [n]$, $A_{i,j}$ contains the following four clauses:

$$x_i \vee y_j \vee u_i \vee v_j \vee t_{i,j} \qquad x_i \vee \overline{y_j} \vee u_i \vee \overline{v_j} \vee t_{i,j}$$

$$\overline{x_i} \vee y_j \vee \overline{u_i} \vee v_j \vee t_{i,j} \qquad \overline{x_i} \vee \overline{y_j} \vee \overline{u_i} \vee \overline{v_j} \vee t_{i,j}$$

- Winning strategy: for all $i \in [n]$, set $u_i = x_i$; and for all $j \in [n]$, set $v_i = y_i$.
- Eq $^2(n)$ is easy for regular MRes.

Regular MRes- \mathcal{R} is exponentially stronger than regular MRes

• From the clauses $A_{i,j}$'s of Eq²(n), the universal variables are removed carefully in such a way that the resulting QBF is still false but becomes hard for regular MRes.

Regular MRes- \mathcal{R} is exponentially stronger than regular MRes

- From the clauses $A_{i,j}$'s of Eq²(n), the universal variables are removed carefully in such a way that the resulting QBF is still false but becomes hard for regular MRes.
- \mathcal{H} -Eq² $(n)(R_0, R_1)$ identifies two regions in the $[n] \times [n]$ grid and changes the $A_{i,j}$ clauses of Eq²(n) based on the regions (i,j) belongs to.
- \mathcal{H} -Eq² $(n)(R_0, R_1)$ can use any partition of $[n] \times [n]$ grid into two regions R_0, R_1 such that each region has at least one position in each row and at least one position in each column.
- We call such partition R_0 , R_1 as covering partition.

Regular MRes- \mathcal{R} is exponentially stronger than regular MRes

- From the clauses $A_{i,j}$'s of Eq²(n), the universal variables are removed carefully in such a way that the resulting QBF is still false but becomes hard for regular MRes.
- \mathcal{H} -Eq² $(n)(R_0, R_1)$ identifies two regions in the $[n] \times [n]$ grid and changes the $A_{i,j}$ clauses of Eq²(n) based on the regions (i,j) belongs to.
- \mathcal{H} -Eq² $(n)(R_0, R_1)$ can use any partition of $[n] \times [n]$ grid into two regions R_0, R_1 such that each region has at least one position in each row and at least one position in each column.
- We call such partition R_0 , R_1 as covering partition.

Lemma (Mahajan and Sood 2022)

 \mathcal{H} -Eq²(n)(R₀, R₁) requires exponential-size refutations in regular MRes

\mathcal{H} -Eq²(n)(R_0, R_1)

Definition (Mahajan and Sood 2022)

$$\underset{i \in [n]}{\exists} x_i, \underset{j \in [n]}{\exists} y_j \, \forall u_i, \, \forall v_j \, \underset{i,j \in [n]}{\exists} t_{i,j}. \left(\bigwedge_{i,j \in [n]} A_{i,j} \right) \wedge B$$

- $B = \bigvee_{i,j \in [n]} \overline{t_{i,j}}$
- For $(i,j) \in R_0$, $A_{i,j}$ contains the following four clauses:

$$x_i \lor y_j \lor u_i \lor v_j \lor t_{i,j}$$
 $x_i \lor \overline{y_j} \lor u_i \lor t_{i,j}$ $\overline{x_i} \lor y_j \lor v_j \lor t_{i,j}$ $\overline{x_i} \lor \overline{y_j} \lor t_{i,j}$

• For $(i,j) \in R_1$, $A_{i,j}$ contains the following four clauses:

$$x_{i} \lor y_{j} \lor t_{i,j} \qquad x_{i} \lor \overline{y_{j}} \lor \overline{v_{j}} \lor t_{i,j}$$

$$\overline{x_{i}} \lor y_{j} \lor \overline{u_{i}} \lor t_{i,j} \qquad \overline{x_{i}} \lor \overline{y_{j}} \lor \overline{u_{i}} \lor \overline{v_{j}} \lor t_{i,j}$$

20 / 35

Anil Shukla MRes-R proof systems FSTTCS

Linear size refutation of $\mathcal{H} ext{-}\mathsf{Eq}^2(n)(R_0,R_1)$ in regular MRes- \mathcal{R}

For $(i,j) \in R_0$:

$$\underset{i \in [n]}{\exists} x_i, \underset{j \in [n]}{\exists} y_j \, \underset{i \in [n]}{\forall} u_i, \underset{j \in [n]}{\forall} v_j \, \underset{i,j \in [n]}{\exists} t_{i,j}$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

21/35

Linear size refutation of \mathcal{H} -Eq² $(n)(R_0, R_1)$ in regular MRes- \mathcal{R} (Contd.)

For $(k, \ell) \in R_1$:

$$\exists x_i, \exists y_j \forall u_i, \forall v_j \exists t_{i,j} \\ i \in [n] x_i, j \in [n] v_j \exists t_{i,j}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

22 / 35

Linear size refutation of \mathcal{H} -Eq² $(n)(R_0, R_1)$ in regular MRes- \mathcal{R} (Contd.)

FSTTCS

Lower bounds for regular MRes- \mathcal{R}

- Beyersdorff et al., 2020 showed that the Completion Principle
 Formulas CR_n (Janota and Marques-Silva 2015) are hard for regular MRes.
- We lift the lower bound proof of CR_n to regular MRes- $\mathcal R$ as well.

Lower bounds for regular MRes- \mathcal{R}

- Beyersdorff et al., 2020 showed that the Completion Principle Formulas CR_n (Janota and Marques-Silva 2015) are hard for regular MRes.
- We lift the lower bound proof of CR_n to regular MRes- \mathcal{R} as well.

The Completion Principle: Consider two sets $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$, and depict their cross product $A \times B$ as in the table below.

a_1	a_1	 a ₁	a ₂	<i>a</i> ₂		a ₂	 	a _n	an	 a _n
b_1	b_2	 b _n	b_1	b_2	• • •	b_n	 	b_1	b_2	 bn

The Completion Principle

<i>a</i> ₁	a_1	 <i>a</i> ₁	a ₂	<i>a</i> ₂	 a ₂	 	a _n	an	 a _n
b_1	b_2	 b _n	b_1	b_2	 b _n	 	b_1	b_2	 b_n

- The following two player game is played on the above table:
- In the first round, player 1 deletes exactly one cell from each column.
- In the second round, player 2 chooses one of the two rows.
- Player 2 wins if the chosen row contains either the complete set A or the set B; otherwise player 1 wins.
- It is well known that player 2 has a winning strategy:

The Completion Principle: Player 2 winning strategy

b_1	b_2	 b_n	b_1	b_2	 b_n	 	b_1	b_2	 b_n

Winning strategy of player 2:

- Suppose, after player 1 plays, some a_i is missing in the top row. Then the entire set B below the a_i chunk is present in the bottom row and so player 2 chooses the bottom row to win.
- Otherwise, no a_i is missing in the top row, so player 2 can win by choosing the top row.
- This fact (that player 2 can always win) is called the completion principle.

The false QBF CR_n

- \bullet CR_n encodes that player 1 has a winning strategy.
- For each (i,j) column of the table $\begin{bmatrix} a_i \\ b_j \end{bmatrix}$, we have a variable $x_{i,j}$.
- Let $x_{i,j} = 0$ denote that player 1 keeps a_i (i.e., deletes b_j) from $(i,j)^{\text{th}}$ column.
- $x_{i,j} = 1 \implies \text{player } 1 \text{ keeps } b_j$.

Anil Shukla MRes- ${\cal R}$ proof systems

The false QBF CR_n

- \bullet CR_n encodes that player 1 has a winning strategy.
- For each (i,j) column of the table $\begin{bmatrix} a_i \\ b_j \end{bmatrix}$, we have a variable $x_{i,j}$.
- Let $x_{i,j} = 0$ denote that player 1 keeps a_i (i.e., deletes b_j) from $(i,j)^{\text{th}}$ column.
- $x_{i,j} = 1 \implies \text{player } 1 \text{ keeps } b_i$.
- Let the variable z denote the choice of player 2: $z = 0 \implies$ player 2 chooses the top row.
- For $i,j \in [n]$, Boolean variables a_i,b_j encode that for the chosen values of all the $x_{k,\ell}$, and the row chosen via z, at least one copy of the element a_i and b_j , respectively, is kept.
- For example: $(x_{i,j} \land z) \Rightarrow b_j$.

The false QBF CR_n

Definition (CR_n (Janota and Marques-Silva 2015))

$$\underset{i,j\in[n]}{\exists}x_{i,j},\forall z,\underset{i\in[n]}{\exists}a_{i},\underset{j\in[n]}{\exists}b_{j}.\Big(\underset{i,j\in[n]}{\wedge}(A_{i,j}\wedge B_{i,j})\Big)\wedge L_{A}\wedge L_{B}, \text{ where }$$

- $A_{i,j} = x_{i,j} \lor z \lor a_i$
- $B_{i,j} = \overline{x_{i,j}} \vee \overline{z} \vee b_j$
- $L_A = \overline{a_1} \vee \overline{a_2} \vee \cdots \vee \overline{a_n}$
- $L_B = \overline{b_1} \vee \overline{b_2} \vee \cdots \vee \overline{b_n}$

Theorem

Every regular MRes- \mathcal{R} refutation of CR_n has size $2^{\Omega(n)}$

◆□▶◆圖▶◆臺▶◆臺▶臺⑤②○

Lower bound for regular MRes- \mathcal{R}

Theorem

Every $(A \cup B)$ -regular MRes- \mathcal{R} refutation of CR_n has size $2^{\Omega(n)}$

Proof outline: Let π be any $(a \cup B)$ -regular MRes- \mathcal{R} proof.

- S': All lines L = (C, H) where C has no variables from $A \cup B$ and there exists a path from L to \bot with only clauses from S'. $\bot \in S'$
- S: Boundary of S'. That is, all lines $\in S'$ whose hypothesis are $\notin S'$.

Anil Shukla MRes- \mathcal{R} proof systems FSTTCS 29 / 35

Lower bound for regular MRes- \mathcal{R} (Contd.)

- Let $F = \bigwedge_{(C,H^u) \in S} C$.
- F is a false CNF formula over n^2 variables $X = \{x_{i,j} : i, j \in [n]\}$.
- For a clause C, let width(C) is equal to the number of literals in C.

Lemma

For all $C \in F$, width $(C) \ge n-2$. That is, for all $L = (C, H^u) \in S$, width $(C) \ge n-2$.

• Each clause C can only be falsified by an assignment by setting at least n-2 literals to zero.

Lower bound for regular MRes- \mathcal{R} (Contd.)

- For any $C \in F$, the number of assignments which falsifies C is at most $2^{n^2-(n-2)}$.
- Since, F is unsatisfiable, every assignment to X must falsify at least one clause ∈ F.
- There are total 2^{n^2} assignments to X.
- Therefore, the number of clauses in F is at least $\frac{2^{n^2}}{2^{n^2-(n-2)}}=2^{(n-2)}$.
- Therefore, the number of lines in π is at least 2^{n-2} .

31/35

Anil Shukla MRes-R proof systems FSTTCS

Ordered MRes- \mathcal{R} with OBDD representation is polynomial-time verifiable

- Since consistency checking is hard in general, MRes- \mathcal{R} proof systems is not polynomial-time verifiable in general.
- An MRes- \mathcal{R} proof systems, which uses a complete representation in which consistency checking, union, and if-else operations are efficient is polynomial-time verifiable.
- One such representation is the OBDDs (Ordered Binary Decision Diagrams) with a fixed ordering of variables.

Lemma

Ordered MRes- \mathcal{R} with OBDD representation is polynomial-time verifiable.

QBFs Proof Systems and their Simulation Hierarchy

Open problems

- ullet Are there exists a family of QBFs which are easy to refute in MRes- $\mathcal R$ but are hard for MRes?
- ② Does there exist a family of false QBFs which are hard to refute in MRes-R.

Thank you.