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Quantified Boolean Formulas (QBFs)

Propositional SAT problem: Given a propositional CNF formula F ,
determine whether F is satisfiable or not.

If F is satisfiable, also output a satisfying assignment for it.

Propositional SAT problem is NP-complete (Cook 1971, Levin 1973).

QBFs extend propositional logic with Boolean quantifiers ∃ and ∀.
∃x .F ≡ F |x=0 ∨ F |x=1.

∀x .F ≡ F |x=0 ∧ F |x=1.
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(QBF warm-up)

ϕ ≡ (x ∨ ¬y) ∧ (¬x ∨ y). (Propositional logic)

ϕ is satisfiable when x = y : A satisfying assignment: x = 0, y = 0.

F1 ≡ ∃x∀y .(x ∨ ¬y) ∧ (¬x ∨ y) (QBF )

Is there exists a value of x ∈ {0, 1} such that for all values of
y ∈ {0, 1} x = y?

F1 is false.

F2 ≡ ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) (QBF )

Observe, F2 is true

For all x , is there exists a y , such that x = y?
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(QBF warm-up)

A model for
F2 ≡ ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y)
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Quantified Boolean Formulas (QBFs)

F = Q.ϕ = Q1X1Q2X2 . . .QkXk .ϕ(X1,X2, . . . ,Xk) is a QBF, where

Qi ∈ {∃,∀} and Qi ̸= Qj .
Xi are pairwise disjoint set of variables.
ϕ(X1,X2, . . .Xk) is a CNF formula.
If Qi = ∃ (resp.Qi = ∀), then all variables x ∈ Xi is called existential
(reps. universal) variables.

If a variable x ∈ Xi and y ∈ Xj , where i < j , then we say that x occurs
to the left of y in the quantifier prefix (denoted x ≤Q y), and y occurs
to the right of x (denoted y ≥Q x).
For a universal variable u, let
LQ(u) = {x | x is existential and x ≤Q u}
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QBF as a two player game

A QBF F = Q.ϕ = Q1X1Q2X2 . . .QkXk .ϕ(X1,X2, . . . ,Xk) can be
seen as a game between two players: universal (∀) and existential (∃).
In the i th step of the game, the player Qi assigns values to the
variables in Xi .

The existential player wins if ϕ evaluates to 1 under the assignment
constructed in the game.

The universal player wins if ϕ evaluates to 0.
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Winning strategy for QBF

A strategy for a universal player u is a function from assignments to
the variables in LQ(u) to {0, 1}.
A strategy for a universal player is a winning strategy if using this
strategy to assign values to universal variables, the ∀ player wins any
possible game.

A QBF is false, if and only if there exists a winning strategy for the
universal player.

Let the language FQBF be the set of all quantified Boolean formulas
that are false.

FQBF is PSPACE-complete [Meyer and Stockmeyer, 1971].
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Example of false QBFs

Definition (Beyersdorff, Blinkhorn, Hinde 2019)

Equality (Eq(n)) is the following family of false QBFs:

∃
i∈[n]

xi , ∀
i∈[n]

ui , ∃
i∈[n]

ti .
(

∧
i∈[n]

Ai

)
∧ B

where

B = ∃
i∈[n]

ti ,

For i ∈ [n], Ai contains the following two clauses:

(xi ∨ ui ∨ ti ) (xi ∨ ui ∨ ti )

Eq(n) has a winning strategy of the universal player: For each i ∈ [n],
ui = xi .
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QBFs Proof Systems and their Simulation Hierarchy

G
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Merge (MRes) Resolution (Beyersdorff, Blinkhorn, and
Mahajan 2021)

MRes is a sound and complete proof system for false QBFs.

That is, for every QBF F ∈ FQBF, there exists an MRes proof π,
proving the fact that F ∈ FQBF. (Completeness)

If there exists an MRes proof for a QBF F , then F belongs to FQBF.
(Soundness)

MRes explicitly builds partial winning strategies into its proofs.

MRes represents the strategies using a variant of binary decision
diagrams called merge maps.
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MRes-R proof systems

Instead of merge maps, can we represent the winning strategies in the
proof by some other representations?

Can we design a general framework of proof systems for false QBFs,
where one can use any complete representations for the winning
strategies?

A complete representation is the one in which every possible finite
decision function can be represented.

We have positive answers to the above questions.

We introduced a family of proof systems MRes-R, in which winning
strategies are stored in any pre-fixed complete representation.
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MRes-R proof systems

Given false QBF F = Q.ϕ over existential variables X and universal
variables U. An MRes-R derivation of Lm is a sequence

π = L1, L2, . . . , Lm of lines,

where each line Li = (Ci , {Hu
i : u ∈ U}) is derived using one of the

following rules:

Axiom rule: There exists a clause C ∈ ϕ, and Ci is the existential
subclause of C , and for each u ∈ U, Hu

i is the strategy function
mapping u to the falsifying u-literal of C .
Examples:

C = (x1 ∨ u1 ∨ x2) ∈ ϕ Li =
(
(x1 ∨ x2), {Hu1

i = 1,Hu2
i = ∗}

)
C = (x1 ∨ u2 ∨ x2) ∈ ϕ Li =

(
(x1 ∨ x2), {Hu1

i = ∗,Hu2
i = 0}

)
Resolution rules:
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MRes-R proof systems

π = L1, L2, . . . , Lm.

Resolution rules: Suppose the following lines have been derived:

La =
(
(C ′

a ∨ x), {Hu
a : u ∈ U}

)
; Lb =

(
(C ′

b ∨ x), {Hu
b : u ∈ U}

)
Then Li is derived as

→ Ci = (C ′
a ∨ C ′

b). Existential variable x is called pivot.

→ if x <Q u, then Hu
i = Hu

b

x
▷◁ Hu

a [if-else branch]
Meaning: if x = 1 take Hu

b else take Hu
a

This is same as the merge step of MRes
→ else if x >Q u, then Hu

i = Hu
a ◦ Hu

b [consistency +
union step]
Here, MRes requires that the non-trivial strategies are
isomorphic and picks one of them using the Select
function.

π is refuation of F iff Cm = ⊥
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Operations used in MRes-R proof systems

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021) )

Given two strategies Hu
1 and Hu

2 and an existential variable x , the if-else
operation on these strategies for any complete assignments ε over variables

in LQ(u) gives the strategy Hu
3 , denoted as Hu

3 = Hu
1

x
▷◁ Hu

2 as follows:

Hu
3 (ε) =

{
Hu
1 (ε) : ε(x) = 1

Hu
2 (ε) : ε(x) = 0

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Let ε and δ be two partial assignments over a set of variables Z . We say
that ε and δ are consistent, denoted ε ≃ δ, if for every x ∈ Z for which
ε(x) ̸= ∗ and δ(x) ̸= ∗, we have ε(x) = δ(x).

Example: Z = {x1, x2, x3}, ε : x1 = 0, x2 = ∗, x3 = 1,
δ : x1 = ∗, x2 = 1, x3 = 1. Then ε ≃ δ.
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Operations used in MRes-R proof systems

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Two strategies Hu
1 and Hu

2 for a universal player u are consistent
(denoted Hu

1 ≃ Hu
2 ), if the u-assignments given by Hu

1 (ε) and Hu
2 (ε) are

consistent for every possible LQ(u) assignments.

Treat (partial) assignments as a set of literals it satisfies.

That is, let ε is a partial assignment over variables X . Then ε can be
view as a set {x | ε(x) = 1} ∪ {x : ε(x) = 0}.

If two (partial) assignments ε and δ are consistent, the union of ε and
δ (denoted ε ◦ δ) is just the union of their corresponding sets.

Since consistency checks are hard in general, the proof systems in
MRes-R are not polynomial-time verifiable.
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Soundness and Completeness of MRes-R

Lemma (Soundness)

Let (∅, {Hu : u ∈ U}) be a last line in an MRes-R refutation of a QBF
F . Then the function computed by {Hu : u ∈ U} form a countermodel
for F .

We show completeness of MRes-R in two steps:

Lemma

MRes-M (that is, MRes-R using merge maps as representations)
p-simulates MRes.

Since MRes is complete, MRes-M is also complete via the above Lemma.

Lemma

Every MRes-M proof can be transformed into an MRes-R proof for any
complete representation R in exponential time.
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Regular MRes-R is exponentially stronger than regular
MRes

Any MRes-R proof π can be viewed as a directed acyclic graph Gπ

where edges goes from hypothesis to the conclusions.

Let S be a subset of existential variables X of a QBF F .

An MRes-R proof π is called S-regular if for every x ∈ S , there is no
leaf-to-root path in Gπ that uses x more than once as a pivot.

An X -regular MRes-R refutation is simply a regular refutation.

There exists a family of false QBFs H-Eq2(n)(R0,R1)
(Squared-Equality-with-Holes) which are hard to refute for regular
MRes but are easy to refute in regular MRes-R.

H-Eq2(n)(R0,R1) is a variant of Eq2(n).

Anil Shukla MRes-R proof systems FSTTCS 17 / 35



Regular MRes-R is exponentially stronger than regular
MRes

Any MRes-R proof π can be viewed as a directed acyclic graph Gπ

where edges goes from hypothesis to the conclusions.

Let S be a subset of existential variables X of a QBF F .

An MRes-R proof π is called S-regular if for every x ∈ S , there is no
leaf-to-root path in Gπ that uses x more than once as a pivot.

An X -regular MRes-R refutation is simply a regular refutation.

There exists a family of false QBFs H-Eq2(n)(R0,R1)
(Squared-Equality-with-Holes) which are hard to refute for regular
MRes but are easy to refute in regular MRes-R.

H-Eq2(n)(R0,R1) is a variant of Eq2(n).

Anil Shukla MRes-R proof systems FSTTCS 17 / 35



Regular MRes-R is exponentially stronger than regular
MRes

Definition (Eq2(n) (Beyersdorff, Blinkhorn, Mahajan 2021))

∃
i∈[n]

xi , ∃
j∈[n]

yj ∀
i∈[n]

ui , ∀
j∈[n]

vj ∃
i ,j∈[n]

ti ,j .
(

∧
i ,j∈[n]

Ai ,j

)
∧ B

B = ∨
i ,j∈[n]

ti ,j

For i , j ∈ [n], Ai ,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti ,j xi ∨ yj ∨ ui ∨ vj ∨ ti ,j

xi ∨ yj ∨ ui ∨ vj ∨ ti ,j xi ∨ yj ∨ ui ∨ vj ∨ ti ,j

Winning strategy: for all i ∈ [n], set ui = xi ; and for all j ∈ [n], set
vj = yj .

Eq2(n) is easy for regular MRes.
Anil Shukla MRes-R proof systems FSTTCS 18 / 35



Regular MRes-R is exponentially stronger than regular
MRes

From the clauses Ai ,j ’s of Eq
2(n), the universal variables are removed

carefully in such a way that the resulting QBF is still false but
becomes hard for regular MRes.

H-Eq2(n)(R0,R1) identifies two regions in the [n]× [n] grid and
changes the Ai ,j clauses of Eq

2(n) based on the regions (i , j) belongs
to.

H-Eq2(n)(R0,R1) can use any partition of [n]× [n] grid into two
regions R0,R1 such that each region has at least one position in each
row and at least one position in each column.
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H-Eq2(n)(R0,R1)

Definition (Mahajan and Sood 2022)

∃
i∈[n]

xi , ∃
j∈[n]

yj ∀
i∈[n]

ui , ∀
j∈[n]

vj ∃
i ,j∈[n]

ti ,j .
(

∧
i ,j∈[n]

Ai ,j

)
∧ B

B = ∨
i ,j∈[n]

ti ,j

For (i , j) ∈ R0, Ai ,j contains the following four clauses:

xi ∨ yj ∨ ui ∨ vj ∨ ti ,j xi ∨ yj ∨ ui ∨ ti ,j

xi ∨ yj ∨ vj ∨ ti ,j xi ∨ yj ∨ ti ,j

For (i , j) ∈ R1, Ai ,j contains the following four clauses:

xi ∨ yj ∨ ti ,j xi ∨ yj ∨ vj ∨ ti ,j

xi ∨ yj ∨ ui ∨ ti ,j xi ∨ yj ∨ ui ∨ vj ∨ ti ,j

Anil Shukla MRes-R proof systems FSTTCS 20 / 35



Linear size refutation of H-Eq2(n)(R0,R1) in regular
MRes-R
For (i , j) ∈ R0 : ∃

i∈[n]
xi , ∃

j∈[n]
yj ∀

i∈[n]
ui , ∀

j∈[n]
vj ∃

i,j∈[n]
ti,j

xi ∨ yj ∨ ui ∨ vj ∨ ti,j

xi , yj , ti,j
ui = 0,
vj = 0

xi ∨ yj ∨ vj ∨ ti,j

xi , yj , ti,j
ui = ∗,
vj = 0

yj , ti,j ui =

{
∗, xi

0, xi
, vj =

{
0, xi

0, xi
= 0

xi

xi ∨ yj ∨ ui ∨ ti,j

xi , yj , ti,j
ui = 0,
vj = ∗

xi ∨ yj ∨ ti,j

xi , yj , ti,j
ui = ∗,
vj = ∗

yj , ti,j ui =

{
∗, xi

0, xi
, vj =

{
∗, xi

∗, xi
= ∗

xi

ti,j

ui =


∗, xiyj

∗, xiyj

0, xiyj

0, xiyj

=

{
∗, xi

0, xi
, vj =

{
∗, yj

0, yj

yj
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Linear size refutation of H-Eq2(n)(R0,R1) in regular
MRes-R (Contd.)

For (k, ℓ) ∈ R1 : ∃
i∈[n]

xi , ∃
j∈[n]

yj ∀
i∈[n]

ui , ∀
j∈[n]

vj ∃
i,j∈[n]

ti,j

xk ∨ yℓ ∨ tk,ℓ

xk , yℓ, tk,ℓ
uk = ∗,
vℓ = ∗

xk ∨ yℓ ∨ uk ∨ tk,ℓ

xk , yℓ, tk,ℓ
uk = 1,
vℓ = ∗

yℓ, tk,ℓ uk =

{
1, xk

∗, xk
, vℓ =

{
∗, xk

∗, xk
= ∗

xk

xk ∨ yℓ ∨ vℓ ∨ tk,ℓ

xk , yℓ, tk,ℓ
uk = ∗,
vℓ = 1

xk ∨ yℓ ∨ uk ∨ vℓ ∨ tk,ℓ

xk , yℓ, tk,ℓ
uk = 1,
vℓ = 1

yℓ, tk,ℓ uk =

{
1, xk

∗, xk
, vℓ =

{
1, xk

1, xk
= 1

xk

tk,ℓ

uk =


1, xkyℓ

1, xkyℓ

∗, xkyℓ

∗, xkyℓ

=

{
1, xk

∗, xk
, vℓ =

{
1, yℓ

∗, yℓ

yℓ
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Linear size refutation of H-Eq2(n)(R0,R1) in regular
MRes-R (Contd.)
(i , j), ..., (i ′, j ′) ∈ R0, (k, ℓ), ..., (k

′, ℓ′) ∈ R1: ∃
i∈[n]

xi , ∃
j∈[n]

yj ∀
i∈[n]

ui , ∀
j∈[n]

vj ∃
i,j∈[n]

ti,j

∨
p,q∈[n]

tp,q

B := {tp,q | p, q ∈ [n]}
up = ∗ , vq = ∗
for p, q ∈ [n]

B \ {ti,j}

ui =

{
∗, xi

0, xi
,

vj =

{
∗, yj

0, yj
,

up = ∗, vq = ∗ for
p ∈ [n] \ i , q ∈ [n] \ j

ti ,j
ti,j ui =

{
∗, xi

0, xi
, vj =

{
∗, yj

0, yj

B \ R0

up =

{
∗, xp

0, xp
,

vq =

{
∗, yq

0, yq
for p, q ∈ [n]

ti ′,j ′
ti ′,j′

B \ {R0, tk,ℓ}

uk =

{
1, xk

0, xk
, vℓ =

{
1, yℓ

0, yℓ
,

up =

{
∗, xp

0, xp
, vq =

{
∗, yq

0, yq
for p ∈ [n] \ k and q ∈ [n] \ ℓ

tk,ℓ
tk,ℓ

uk =

{
1, xk

∗, xk
, vℓ =

{
1, yℓ

∗, yℓ

⊥

up =

{
1, xp

0, xp
,

vq =

{
1, yq

0, yq
for p, q ∈ [n]

tk′,ℓ′

tk′,ℓ′

Consistent,
non-Isomorphic
strategies
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Lower bounds for regular MRes-R

Beyersdorff et al., 2020 showed that the Completion Principle
Formulas CRn (Janota and Marques-Silva 2015) are hard for regular
MRes.

We lift the lower bound proof of CRn to regular MRes-R as well.

The Completion Principle: Consider two sets A = {a1, . . . , an} and
B = {b1, . . . , bn}, and depict their cross product A× B as in the table
below.

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn
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The Completion Principle

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

The following two player game is played on the above table:

In the first round, player 1 deletes exactly one cell from each column.

In the second round, player 2 chooses one of the two rows.

Player 2 wins if the chosen row contains either the complete set A or
the set B; otherwise player 1 wins.

It is well known that player 2 has a winning strategy:
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The Completion Principle: Player 2 winning strategy

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

Winning strategy of player 2:

Suppose, after player 1 plays, some ai is missing in the top row. Then
the entire set B below the ai chunk is present in the bottom row and
so player 2 chooses the bottom row to win.

Otherwise, no ai is missing in the top row, so player 2 can win by
choosing the top row.

This fact (that player 2 can always win) is called the completion
principle.
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The false QBF CRn

CRn encodes that player 1 has a winning strategy.

For each (i , j) column of the table

[
ai
bj

]
, we have a variable xi ,j .

Let xi ,j = 0 denote that player 1 keeps ai (i.e., deletes bj) from (i , j)th

column.

xi ,j = 1 =⇒ player 1 keeps bj .

Let the variable z denote the choice of player 2: z = 0 =⇒ player 2
chooses the top row.

For i , j ∈ [n], Boolean variables ai , bj encode that for the chosen
values of all the xk,ℓ, and the row chosen via z , at least one copy of
the element ai and bj , respectively, is kept.

For example: (xi ,j ∧ z) ⇒ bj .
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The false QBF CRn

Definition (CRn (Janota and Marques-Silva 2015))

∃
i ,j∈[n]

xi ,j ,∀z , ∃
i∈[n]

ai , ∃
j∈[n]

bj .
(

∧
i ,j∈[n]

(Ai ,j ∧ Bi ,j)
)
∧ LA ∧ LB , where

Ai ,j = xi ,j ∨ z ∨ ai

Bi ,j = xi ,j ∨ z ∨ bj

LA = a1 ∨ a2 ∨ · · · ∨ an

LB = b1 ∨ b2 ∨ · · · ∨ bn

Theorem

Every regular MRes-R refutation of CRn has size 2Ω(n)
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Lower bound for regular MRes-R

Theorem

Every (A ∪ B)-regular MRes-R refutation of CRn has size 2Ω(n)

Proof outline: Let π be any (a ∪ B)-regular MRes-R proof.

S ′ : All lines L = (C ,H) where C has no variables from A ∪ B and
there exists a path from L to ⊥ with only clauses from S ′. ⊥ ∈ S ′

S : Boundary of S ′. That is, all lines ∈ S ′ whose hypothesis are /∈ S ′.

S ′

⊥

(A ∪ B)-regular
MRes-R proof
π

Axioms

S
|S | ≥ 2n−2L = (C ,Hz)

width(C ) ≥ n − 2

ai/bi ai/bi

Anil Shukla MRes-R proof systems FSTTCS 29 / 35



Lower bound for regular MRes-R (Contd.)

Let F = ∧
(C ,Hu)∈S

C .

F is a false CNF formula over n2 variables X = {xi ,j : i , j ∈ [n]}.
For a clause C , let width(C ) is equal to the number of literals in C .

Lemma

For all C ∈ F , width(C ) ≥ n − 2. That is, for all L = (C ,Hu) ∈ S,
width(C ) ≥ n − 2.

Each clause C can only be falsified by an assignment by setting at
least n − 2 literals to zero.
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Lower bound for regular MRes-R (Contd.)

For any C ∈ F , the number of assignments which falsifies C is at
most 2n

2−(n−2).

Since, F is unsatisfiable, every assignment to X must falsify at least
one clause ∈ F .

There are total 2n
2
assignments to X .

Therefore, the number of clauses in F is at least 2n
2

2n
2−(n−2)

= 2(n−2).

Therefore, the number of lines in π is at least 2n−2.

Anil Shukla MRes-R proof systems FSTTCS 31 / 35



Ordered MRes-R with OBDD representation is
polynomial-time verifiable

Since consistency checking is hard in general, MRes-R proof systems
is not polynomial-time verifiable in general.

An MRes-R proof systems, which uses a complete representation in
which consistency checking, union, and if-else operations are efficient
is polynomial-time verifiable.

One such representation is the OBDDs (Ordered Binary Decision
Diagrams) with a fixed ordering of variables.

Lemma

Ordered MRes-R with OBDD representation is polynomial-time verifiable.
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QBFs Proof Systems and their Simulation Hierarchy

G

QRAT

eFrege+∀red

MRes-T

MRes-RFrege+∀red

Known lower bound

Known strategy extraction

MRes

Regular-MRes

Regular-MRes-R

Ordered MRes-R[O(1)]

IR-calc

∀Exp+Res

LD-Q-Res

SemCP+∀red

CP+∀red

QU-Res

LQU-Res

Q-Res

Edges:

BA B p-simulates A

A B A and B are incomparable

A B B is strictly stronger than A

systems below have said property
Nodes/Edges drawn in bold are new results.

Nodes:

A
Polynomial
time verifiable

A
Not polynomial
time verifiable

Family of
proof systems

Single
proof system
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Open problems

1 Are there exists a family of QBFs which are easy to refute in MRes-R
but are hard for MRes?

2 Does there exist a family of false QBFs which are hard to refute in
MRes-R.
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Thank you.
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