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Quantified Boolean Formulas (QBFs)

@ Propositional SAT problem: Given a propositional CNF formula F,
determine whether F is satisfiable or not.

o If F is satisfiable, also output a satisfying assignment for it.
@ Propositional SAT problem is NP-complete (Cook 1971, Levin 1973).
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Quantified Boolean Formulas (QBFs)

Propositional SAT problem: Given a propositional CNF formula F,
determine whether F is satisfiable or not.

If F is satisfiable, also output a satisfying assignment for it.
Propositional SAT problem is NP-complete (Cook 1971, Levin 1973).
QBFs extend propositional logic with Boolean quantifiers 3 and V.
Ix.F = Flx=o0 V Flx=1-

@ Vx.F = Fly—o0 A Flx=1.
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(QBF warm-up)

o ¢ =(xV-y)A(—xVy). (Propositional logic)
¢ is satisfiable when x = y: A satisfying assignment: x =0,y = 0.
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(QBF warm-up)

o ¢ =(xV-y)A(—xVy). (Propositional logic)

¢ is satisfiable when x = y: A satisfying assignment: x =0,y = 0.
e Fi=3IxVy.(x Vay)A(—xVy) (QBF)

Is there exists a value of x € {0, 1} such that for all values of

y €{0,1} x =y?

JF1 is false.
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(QBF warm-up)

o ¢ =(xV-y)A(—xVy). (Propositional logic)

¢ is satisfiable when x = y: A satisfying assignment: x =0,y = 0.
e Fi=3IxVy.(x Vay)A(—xVy) (QBF)

Is there exists a value of x € {0, 1} such that for all values of

y €{0,1} x =y?

JF1 is false.
e Fr=Vxdy.(xVay)A(—xVy) (QBF)

Observe, F, is true

For all x, is there exists a y, such that x = y?
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(QBF warm-up)

A model for
Fr =VxJy.(x V-y) A (—x Vy)
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(QBF warm-up)

A model for A counter-model for
For =Vx3y.(x Vay)A(—x Vy) F1=3IxVy.(x Vay) A (=x Vy)
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Quantified Boolean Formulas (QBFs)

e F= qu = Q1X1 Q2X2 . Qka.d)(Xl, XQ, “ o ,Xk) is a QBF, where
o Q;e{3,V}and Q; # Q,.

e X; are pairwise disjoint set of variables.

o ¢(Xq,Xa,...Xk) is a CNF formula.

o If Q; =3 (resp.Q; = V), then all variables x € X; is called existential

(reps. universal) variables.
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Quantified Boolean Formulas (QBFs)

e F= qu = Q1X1 Q2X2 . Qka.d)(Xl, XQ, “ o ,Xk) is a QBF, where

Q; € {H,V} and Q; 75 Qj.

X; are pairwise disjoint set of variables.

@(X1, Xa, ... Xk) is a CNF formula.

If Q; =3 (resp.Q; = V), then all variables x € X; is called existential

(reps. universal) variables.

o If a variable x € Xj and y € X;, where / < j, then we say that x occurs
to the left of y in the quantifier prefix (denoted x <g y), and y occurs
to the right of x (denoted y >¢ x).

o For a universal variable u, let
Lo(u) = {x | x is existential and x <g u}
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QBF as a two player game

o A QBF F = Q¢ = Q1X1Q2X2 e Qka.¢(X1,X2, e ,Xk) can be
seen as a game between two players: universal (V) and existential (3).

o In the /™" step of the game, the player Q; assigns values to the
variables in X;.
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QBF as a two player game

o A QBF F = Q¢ = Q1X1Q2X2 e Qka.¢(X1,X2, e ,Xk) can be
seen as a game between two players: universal (V) and existential (3).

o In the /™" step of the game, the player Q; assigns values to the
variables in X;.

@ The existential player wins if ¢ evaluates to 1 under the assignment
constructed in the game.

@ The universal player wins if ¢ evaluates to 0.
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Winning strategy for QBF

@ A strategy for a universal player u is a function from assignments to
the variables in Lo(u) to {0, 1}.

@ A strategy for a universal player is a winning strategy if using this
strategy to assign values to universal variables, the V player wins any
possible game.
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Winning strategy for QBF

A strategy for a universal player u is a function from assignments to
the variables in Lo(u) to {0, 1}.

A strategy for a universal player is a winning strategy if using this
strategy to assign values to universal variables, the V player wins any
possible game.

A QBEF is false, if and only if there exists a winning strategy for the
universal player.

Let the language FQBF be the set of all quantified Boolean formulas
that are false.

FQBF is PSPACE-complete [Meyer and Stockmeyer, 1971].
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Example of false QBFs

Definition (Beyersdorff, Blinkhorn, Hinde 2019)

Equality (Eq(n)) is the following family of false QBFs:

3 x, ¥V u, 3 t,-.( A A,-)/\B
i€[n] i€[n] i€[n] i€[n]

where

e B= 3t
i€[n]

e For i € [n], A; contains the following two clauses:

(X,'VU,'\/t,') (7,‘\/7,’\/ t,')
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Example of false QBFs

Definition (Beyersdorff, Blinkhorn, Hinde 2019)
Equality (Eq(n)) is the following family of false QBFs:
3 x;, ¥ uj, 3 t,-.( A A,-)/\B
i€[n] " i€[n] i€[n] i€[n]
where

e B= 3t
i€[n]

e For i € [n], A; contains the following two clauses:

(X,'VU,'\/t,') (7,‘\/7,’\/ t,')

e Eq(n) has a winning strategy of the universal player: For each i € [n],
uj = Xj.
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QBFs Proof Systems and their Simulation Hierarch

Edges:
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Merge (MRes) Resolution (Beyersdorff, Blinkhorn, and

Mahajan 2021)

@ MRes is a sound and complete proof system for false QBFs.

e That is, for every QBF F € FQBF, there exists an MRes proof T,
proving the fact that F € FQBF. (Completeness)

o If there exists an MRes proof for a QBF F, then F belongs to FQBF.
(Soundness)

@ MRes explicitly builds partial winning strategies into its proofs.

@ MRes represents the strategies using a variant of binary decision
diagrams called merge maps.
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MRes-R proof systems

@ Instead of merge maps, can we represent the winning strategies in the
proof by some other representations?

@ Can we design a general framework of proof systems for false QBFs,
where one can use any complete representations for the winning
strategies?

@ A complete representation is the one in which every possible finite
decision function can be represented.
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MRes-R proof systems

@ Instead of merge maps, can we represent the winning strategies in the
proof by some other representations?

@ Can we design a general framework of proof systems for false QBFs,
where one can use any complete representations for the winning
strategies?

@ A complete representation is the one in which every possible finite
decision function can be represented.

@ We have positive answers to the above questions.

@ We introduced a family of proof systems MRes-R, in which winning
strategies are stored in any pre-fixed complete representation.
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MRes-R proof systems

o Given false QBF F = Q.¢ over existential variables X and universal
variables U. An MRes-R derivation of L, is a sequence

m=1q,Lo,...,L; of lines,

where each line L; = (G, {H} : u € U}) is derived using one of the
following rules:

o Axiom rule: There exists a clause C € ¢, and (; is the existential
subclause of C, and for each u € U, H} is the strategy function
mapping u to the falsifying u-literal of C.

Examples:

C=(uvavmes L=((avx) (H"=1H"=+})

C=(RVwVx)ed Li:((71\/X2)7{H;”1:*a/'/;”2=0})

o Resolution rules:
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MRes-R proof systems

™ = Ll,LQ,...,Lm.
@ Resolution rules: Suppose the following lines have been derived:

L, = ((c;vX),{H; L ue U}); Lp= ((C{,\/Y),{Hg Lue U})

Then L; is derived as
— Ci=(C,Vv (Cp). Existential variable x is called pivot.
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MRes-R proof systems

™ = Ll,LQ,...,Lm.
@ Resolution rules: Suppose the following lines have been derived:

L, = ((c;vX),{H; L ue U}); Lp= ((C{,\/Y),{H[,’ Lue U})

Then L; is derived as
— Ci=(C,Vv (Cp). Existential variable x is called pivot.
— if x <g u, then H = H}/ B HY [if-else branch]
Meaning: if x = 1 take Hf else take H
This is same as the merge step of MRes

Anil Shukla MRes-R proof systems FSTTCS 13/35



MRes-R proof systems

™ = Ll,LQ,...,Lm.
@ Resolution rules: Suppose the following lines have been derived:

L, = ((c;vX),{H; L ue U}); Lp= ((C{,\/Y),{H[,’ Lue U})

Then L; is derived as
— Ci=(C,Vv (Cp). Existential variable x is called pivot.
— if x <g u, then H = H}/ B HY [if-else branch]
Meaning: if x = 1 take Hf else take H

This is same as the merge step of MRes

— else if x >g u, then HY = HY o H  [consistency +
union step|
Here, MRes requires that the non-trivial strategies are

isomorphic and picks one of them using the Select
function.
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MRes-R proof systems

™ = Ll,LQ,...,Lm.
@ Resolution rules: Suppose the following lines have been derived:

L, = ((c;vX),{H; L ue U}); Lp= ((C{,\/Y),{H[,’ Lue U})

Then L; is derived as
— Ci=(C,Vv (Cp). Existential variable x is called pivot.
— if x <g u, then H = H}/ B HY [if-else branch]
Meaning: if x = 1 take Hf else take H
This is same as the merge step of MRes
— else if x >g u, then HY = HY o H  [consistency +
union step|
Here, MRes requires that the non-trivial strategies are
isomorphic and picks one of them using the Select
function.
7 is refuation of F iff Cp, = L
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Operations used in MRes-R proof systems

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021) )
Given two strategies H;' and H5 and an existential variable x, the if-else
operation on these strategies for any complete assignments ¢ over variables
in Lo(u) gives the strategy HY, denoted as HY = HY 51 HY as follows:
Hi(e) : e(x)=1
u — 1
Hy(e) = { Hi(e) : e(x)=0
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Operations used in MRes-R proof systems

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021) )

Given two strategies H;' and H5 and an existential variable x, the if-else
operation on these strategies for any complete assignments ¢ over variables
in Lo(u) gives the strategy HY, denoted as HY = HY 51 HY as follows:
Hi(e) : e(x)=1
e ={ e
Hy(e) : e(x)=0

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Let £ and § be two partial assignments over a set of variables Z. We say
that € and ¢ are consistent, denoted ¢ ~ ¢, if for every x € Z for which
g(x) # * and §(x) # *, we have e(x) = d(x).
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Operations used in MRes-R proof systems

Definition (if-else operation (Blinkhorn, Peitl, Slivovsky 2021) )

Given two strategies H;' and H5 and an existential variable x, the if-else
operation on these strategies for any complete assignments ¢ over variables
in Lo(u) gives the strategy HY, denoted as HY = HY 51 HY as follows:
Hi(e) : e(x)=1
e ={ e
Hy(e) : e(x)=0

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Let £ and § be two partial assignments over a set of variables Z. We say
that € and ¢ are consistent, denoted ¢ ~ ¢, if for every x € Z for which
g(x) # * and §(x) # *, we have e(x) = d(x).

Example: Z = {x1,x2,x3}, € : x1 = 0,x0 = *,x3 = 1,
0:x1=%,x=1,x3=1. Then e ~ §.
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Operations used in MRes-R proof systems

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Two strategies H{' and H5' for a universal player u are consistent
(denoted Hj' ~ HY), if the u-assignments given by H{(¢) and Hy(c) are
consistent for every possible Lo(u) assignments.

o Treat (partial) assignments as a set of literals it satisfies.

@ That is, let € is a partial assignment over variables X. Then € can be
view as a set {x | e(x) =1} U{Xx : e(x) = 0}.
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Operations used in MRes-R proof systems

Definition ( Blinkhorn, Peitl, Slivovsky 2021)

Two strategies H{' and H5' for a universal player u are consistent
(denoted Hj' ~ HY), if the u-assignments given by H{(¢) and Hy(c) are
consistent for every possible Lo(u) assignments.

o Treat (partial) assignments as a set of literals it satisfies.

@ That is, let € is a partial assignment over variables X. Then € can be
view as a set {x | e(x) =1} U{Xx : e(x) = 0}.

o If two (partial) assignments ¢ and § are consistent, the union of ¢ and
0 (denoted € o ¢) is just the union of their corresponding sets.

@ Since consistency checks are hard in general, the proof systems in
MRes-R are not polynomial-time verifiable.
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Soundness and Completeness of MRes-R

Lemma (Soundness)

Let (0,{H" : u € U}) be a last line in an MRes-R refutation of a QBF
F. Then the function computed by {H" : u € U} form a countermodel
for F.

We show completeness of MRes-R in two steps:

MRes-M (that is, MRes-R using merge maps as representations)
p-simulates MRes.

Since MRes is complete, MRes-M is also complete via the above Lemma.
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Soundness and Completeness of MRes-R

Lemma (Soundness)

Let (0,{H" : u € U}) be a last line in an MRes-R refutation of a QBF
F. Then the function computed by {H" : u € U} form a countermodel
for F.

We show completeness of MRes-R in two steps:

MRes-M (that is, MRes-R using merge maps as representations)
p-simulates MRes.

Since MRes is complete, MRes-M is also complete via the above Lemma.

Every MRes-M proof can be transformed into an MRes-R proof for any
complete representation R in exponential time.

= = = — SaNe;
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Regular MRes-R is exponentially stronger than regular

MRes

@ Any MRes-R proof 7 can be viewed as a directed acyclic graph G,
where edges goes from hypothesis to the conclusions.

@ Let S be a subset of existential variables X of a QBF F.

@ An MRes-R proof 7 is called S-regular if for every x € S, there is no
leaf-to-root path in G, that uses x more than once as a pivot.

@ An X-regular MRes-R refutation is simply a regular refutation.
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Regular MRes-R is exponentially stronger than regular

MRes

@ Any MRes-R proof 7 can be viewed as a directed acyclic graph G,
where edges goes from hypothesis to the conclusions.

@ Let S be a subset of existential variables X of a QBF F.

@ An MRes-R proof 7 is called S-regular if for every x € S, there is no
leaf-to-root path in G, that uses x more than once as a pivot.

@ An X-regular MRes-R refutation is simply a regular refutation.

@ There exists a family of false QBFs H-Eq?(n)(Ro, R1)
(Squared-Equality-with-Holes) which are hard to refute for regular
MRes but are easy to refute in regular MRes-R..

e H-Eq?(n)(Ro, R1) is a variant of Eq?(n).
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Regular MRes-R is exponentially stronger than regular
MRes

Definition (Eq?(n) (Beyersdorff, Blinkhorn, Mahajan 2021))

dx, 3y Vu, Vv 3 t. AN Aii|]A\NB
icin] je[n]yjie[n] jeln ijem (i,je[n] ’J)

e B= V t;
ij€[n]
@ For i,j € [n], Ajj contains the following four clauses:
XiVyjVuiV vV tj; XiVyjVuiV VvVt
X VyiVTGV vVt VY VTGV VL

e Winning strategy: for all i € [n], set u; = x;; and for all j € [n], set
Vi =Y
e Eq?(n) is easy for regular MRes.
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Regular MRes-R is exponentially stronger than regular

MRes

o From the clauses A;;'s of Eq?(n), the universal variables are removed
carefully in such a way that the resulting QBF is still false but
becomes hard for regular MRes.
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Regular MRes-R is exponentially stronger than regular

MRes

o From the clauses A;;'s of Eq?(n), the universal variables are removed
carefully in such a way that the resulting QBF is still false but
becomes hard for regular MRes.

o H-Eq?(n)(Ro, R1) identifies two regions in the [n] x [n] grid and
changes the A;; clauses of Eq?(n) based on the regions (i, j) belongs
to.

o H-Eq?(n)(Ro, R1) can use any partition of [n] x [n] grid into two
regions Ry, R such that each region has at least one position in each
row and at least one position in each column.

@ We call such partition Ry, Ry as covering partition.

Anil Shukla MRes-R proof systems FSTTCS 19/35



Regular MRes-R is exponentially stronger than regular

MRes

o From the clauses A;;'s of Eq?(n), the universal variables are removed
carefully in such a way that the resulting QBF is still false but
becomes hard for regular MRes.

o H-Eq?(n)(Ro, R1) identifies two regions in the [n] x [n] grid and
changes the A;; clauses of Eq?(n) based on the regions (i, j) belongs
to.

o H-Eq?(n)(Ro, R1) can use any partition of [n] x [n] grid into two
regions Ry, R such that each region has at least one position in each
row and at least one position in each column.

@ We call such partition Ry, Ry as covering partition.

Lemma (Mahajan and Sood 2022)

H-Eq?(n)(Ro, R1) requires exponential-size refutations in regular MRes

= = = = =
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H—qu(n)(Ro, Rl)

Definition (Mahajan and Sood 2022)

dx, 3y Vu, Vvi 3 ti. AN Aij)]NB
i€l e el eln] el (iJE[n] ’J>
e B= V t;

ijeln Y

e For (i,j) € Ro, A contains the following four clauses:

XiVyiVuiV vVt XiVyjVujVtij
XiVyjV ViV t; XiVYyjVtij

e For (i,j) € Ry, Ajj contains the following four clauses:

Xi Vyj V tij XiVYyiV ViVt

X Vyi VTVt VY VTGV VL

v
7
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Linear size refutation of H-Eq?(n)(Ry, Ry) in regular

MRes-R

For (i,j) € Ry : 3 x, 3y Vou, Vv 3 tij

il e et jelnl i get

up = *, =0 -

Xis Yo tij| . —
Gyl — o

(X;V}/jVu;\/\/j\/t;J) CY;VijVj\/t,'J) VYVt

* 0 XiYj

D Ll RS Sl
0, Xiy; 0, X 0, ¥
0, Xy;
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Linear size refutation of H-Eq?(n)(Ry, Ry) in regular

MRes-R (Contd.)

For (k.0) € R, - Tx. 3y Y Vv 3t
or (kn6) € R il i il el it

Envavn) (e (EEvEve)

1, xkye

e O RS (i
* 0 XkYe * 0 Xk * Ve
* XkYe
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Linear size refutation of H-Eq?(n)(Ry, Ry) in regular

MRes-R (Contd.)

i J), s (7)€ Roy (ko €)oo (K ) € R 3, 3y ¥ gy ¥ v 3t
(1) (1) € R (K o U E € Rz, Q00 Qi 21

Up =%, Vg =%
for p,q € [n]

Consistent,
T ' 1 non-Isomorphic
up = o Lt strategies
0, X
D I
' 0. % ' e
up = *, vq = * for ) . — e
peln\iqgeln\j {*~ Yq 1, x 1,
Vg = T U = , Ve = .
0, ¥q 0, Xx 0, L %
for € [n] tp = _
pa * Xp *  Yq 0, X
up = vy = 7q » Xp
0, X 0, ¥ 1y
for p€ [n]\ k and g € [n] \ ¢ Vg = 0, Vo
v Yq
for p,q € [n]
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Lower bounds for regular MRes-R

o Beyersdorff et al., 2020 showed that the Completion Principle
Formulas CR,, (Janota and Marques-Silva 2015) are hard for regular
MRes.

@ We lift the lower bound proof of CR, to regular MRes-R as well.
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Lower bounds for regular MRes-R

o Beyersdorff et al., 2020 showed that the Completion Principle

Formulas CR,, (Janota and Marques-Silva 2015) are hard for regular

MRes.

@ We lift the lower bound proof of CR, to regular MRes-R as well.
The Completion Principle: Consider two sets A = {ay,

...,an} and

B = {bs,...,bn}, and depict their cross product A x B as in the table
below.
a | a1 ar || d2 | @ az an | @n an
b1 | by bn || b1 | b2 bn by | by bn
Anil Shukla

MRes-R proof systems

FSTTCS
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The Completion Principle

ai a1 al an ar dn an an an
by | by | ... | by b1 | b2 | ... | bpll... ...l b1]|b2]|...] by
@ The following two player game is played on the above table:

@ In the first round, player 1 deletes exactly one cell from each column.
@ In the second round, player 2 chooses one of the two rows.

o Player 2 wins if the chosen row contains either the complete set A or

the set B; otherwise player 1 wins.

It is well known that player 2 has a winning strategy:
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The Completion Principle: Player 2 winning strategy

dal dai al an an an dp | an dan
by | by | ... | bp| b1 | b2 | ... | bp]l... .|l b1]|b2]|...] by

Winning strategy of player 2:

@ Suppose, after player 1 plays, some a; is missing in the top row. Then
the entire set B below the a; chunk is present in the bottom row and
so player 2 chooses the bottom row to win.

@ Otherwise, no a; is missing in the top row, so player 2 can win by
choosing the top row.

@ This fact (that player 2 can always win) is called the completion
principle.
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The false QBF CR,,

CR,, encodes that player 1 has a winning strategy.

For each (7, /) column of the table [Z’] we have a variable x; ;.
j

Let x; ; = O denote that player 1 keeps a; (i.e., deletes b;) from (i, )™
column.

xjj =1 == player 1 keeps b;.
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The false QBF CR,,

CR,, encodes that player 1 has a winning strategy.
aj
bj
Let x; ; = O denote that player 1 keeps a; (i.e., deletes b;) from (i, )™
column.

For each (7, /) column of the table [ ] we have a variable x; ;.

xjj =1 == player 1 keeps b;.

Let the variable z denote the choice of player 2: z=0 = player 2
chooses the top row.

For i,j € [n], Boolean variables a;, b; encode that for the chosen
values of all the x ¢, and the row chosen via z, at least one copy of
the element a; and b, respectively, is kept.

For example: (xij A z) = b;.
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The false QBF CR,,

Definition (CR, (Janota and Marques-Silva 2015))

3 x;,Vz, 3 a, 3 b-.( A A--/\B--)/\L A Lg, wh
it V2 i sl i\ 1 i A Bis) ) A Ea N L, where

@ Aij=xi;jVzVaj
OB,‘JZWJ\/f\/bj
o lp=3aVaV---Va,

e lg=b Vb V---Vb,

Every regular MRes-R. refutation of CR, has size 24"
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Lower bound for regular MRes-R

Every (AU B)-regular MRes-R refutation of CR, has size 2(")

Proof outline: Let 7 be any (a U B)-regular MRes-R proof.
e S': All lines L = (C, H) where C has no variables from AU B and
there exists a path from L to L with only clauses from S’. L € §'
@ S : Boundary of S’. That is, all lines € S’ whose hypothesis are ¢ S'.

Axioms

(AU B)-regular
MRes-R proof
™

width(C) > n—2
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Lower bound for regular MRes-R (Contd.)

o Let F = A
(C,H")eS

2

e Fis a false CNF formula over n* variables X = {x;; : i,j € [n]}.

e For a clause C, let width(C) is equal to the number of literals in C.

For all C € F, width(C) > n—2. Thatis, for all L= (C,H") € S,
width(C) > n— 2.

@ Each clause C can only be falsified by an assignment by setting at
least n — 2 literals to zero.
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Lower bound for regular MRes-R (Contd.)

For any C € F, the number of assignments which falsifies C is at
most 27 ~(n=2),

Since, F is unsatisfiable, every assignment to X must falsify at least
one clause € F.

o There are total 2" assignments to X.

n2
Therefore, the number of clauses in F is at least ﬁ = 2(n=2)

(
@ Therefore, the number of lines in 7 is at least 2" 2.
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Ordered MRes-R with OBDD representation is

polynomial-time verifiable

@ Since consistency checking is hard in general, MRes-R proof systems
is not polynomial-time verifiable in general.

@ An MRes-R proof systems, which uses a complete representation in
which consistency checking, union, and if-else operations are efficient
is polynomial-time verifiable.

@ One such representation is the OBDDs (Ordered Binary Decision
Diagrams) with a fixed ordering of variables.

Ordered MRes-R with OBDD representation is polynomial-time verifiable.

Anil Shukla MRes-R proof systems FSTTCS 32/35




QBFs Proof Systems and their Simulation Hierarch

Edges:

E B p-simulates A

E B is strictly stronger than A

<IZ ,,,,,,,, -_——— -- A and B are incomparable
nown strategy extraction 4--3  systems below have said property
Nodes/Edges drawn in bold are new results.

eFrege+Vred

Frege+Vred

.

.

— e
Grdered M Res-R[O(l_)]j

Nodes:
Polynomial

. .
. .
"traammmns®?®

time verifiable

Family of
proof systems

Single
proof system
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Open problems

@ Are there exists a family of QBFs which are easy to refute in MRes-R
but are hard for MRes?

@ Does there exist a family of false QBFs which are hard to refute in
MRes-R.
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Thank you. )
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