Are Short Proofs Narrow? QBF Resolution is not Simple

Olaf Beyersdorff¹ Leroy Chew¹ Meena Mahajan² **Anil Shukla**²

¹ School of Computing, University of Leeds, UK
² Institute of Mathematical Sciences Chennai, India

IRISS-2017: 11th Inter-Research-Institute Student Seminar Kolkata, India January 20, 2017

Outline

- Resolution Proof System
- Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Outline

- Resolution Proof System
- 2 Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- 4 QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Resolution

- Introduced by Blake in 1937.
- Resolution is a proof system for proving that boolean formulas in a CNF form are unsatisfiable.
- The only inference rule in resolution is:

$$\frac{C \vee x \quad D \vee \neg x}{C \vee D}$$

- CNF formula $F \in UNSAT \implies F$ has a **resolution proof** (completeness).
- A CNF formula F has a **resolution proof** $\implies F \in \mathsf{UNSAT}$ (Soundness).

• Let $F = \{C_1, \dots, C_k\}$ be an unsatisfiable formula over n variables.

- Let $F = \{C_1, \dots, C_k\}$ be an unsatisfiable formula over n variables.
- A resolution proof of $F \in UNSAT$ is a sequence of clauses $\pi = \{D_1, \dots, D_t\}$ such that
 - The last clause D_t is the empty clause \square .
 - Each clause D_q is either one of the initial clauses or is derived from some clause D_m , D_n with m, n < q using the resolution rule.

- Let $F = \{C_1, \dots, C_k\}$ be an unsatisfiable formula over n variables.
- A resolution proof of $F \in UNSAT$ is a sequence of clauses $\pi = \{D_1, \dots, D_t\}$ such that
 - The last clause D_t is the empty clause \square .
 - Each clause D_q is either one of the initial clauses or is derived from some clause D_m , D_n with m, n < q using the resolution rule.
- If we store pointers from each D_m, D_n to D_q then we actually get a DAG G_{π} . We call G_{π} , proof graph associated with π .
- If G_{π} is a tree then π is called a tree-like resolution proof of F.

Some Examples

Some Examples

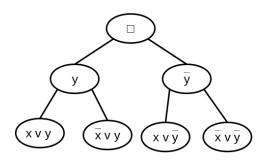
• Consider the following unsatisfiable formula on two variables:

$$(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y).$$

Some Examples

• Consider the following unsatisfiable formula on two variables:

$$(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y).$$

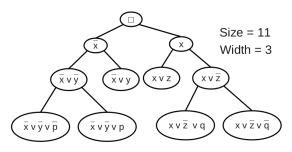


Example 3

Consider the CNF formula on five variables: $F = \{ (\neg x \lor \neg y \lor \neg p), (\neg x \lor \neg y \lor p), (\neg x \lor y), (x \lor z), (x \lor \neg z \lor q), (x \lor \neg z \lor \neg q) \}.$

Example 3

Consider the CNF formula on five variables: $F = \{ (\neg x \lor \neg y \lor \neg p), (\neg x \lor \neg y \lor p), (\neg x \lor y), (x \lor z), (x \lor \neg z \lor q), (x \lor \neg z \lor \neg q) \}.$



Proof graph of F

Outline

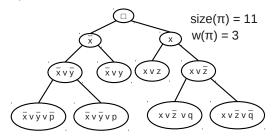
- Resolution Proof System
- 2 Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- 4 QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Complexity measures: Size and Width

 $S(\vdash F) = min \{size(\pi) : \pi \text{ resolution proof of } F\}$

 $w(\vdash F) = min \{w(\pi) : \pi \text{ resolution proof of } F\}$

 $S_{\tau}(\vdash F) = \min \{ size(\pi) : \pi \text{ tree-like res proof of } F \}$



Outline

- Resolution Proof System
- Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- 4 QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Short Proofs are Narrow — Resolution Made Simple

Theorem (Ben-Sasson and Wigderson, J. ACM 2001)

For all unsatisfiable CNFs F in n variables the following holds:

•
$$S_T(\vdash F) \ge 2^{w(\vdash F) - w(F)}$$
.

•
$$S(\vdash F) = \exp\left(\Omega\left(\frac{(w(\vdash F) - w(F))^2}{n}\right)\right)$$
.

• Thus for CNF F with n variables and constant initial width, proving $w(\vdash F) = \Omega(n)$ proves tree-like size lower bounds.

Complexity Measure: Clause Space

- The concept of resolution clause space was first introduced by Esteban and Torán 2001.
- Intuitively, resolution clause space of an unsatisfiable CNF formula is the minimum number of clauses that have to be kept simultaneously in memory in order to refute the formula.
- Let CSpace(⊢ F) = Minimum clause space requirements to refute F.

Theorem (Atserias and Dalmau 2008)

For all unsatisfiable CNFs F the following relation holds: $w(\vdash F) \leq CSpace(\vdash F) + w(F) - 1$

Outline

- Resolution Proof System
- 2 Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- 4 QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Introduction

• QBFs are propositional formulas with Boolean quantifiers ranging over 0, 1.

Introduction

- QBFs are propositional formulas with Boolean quantifiers ranging over 0, 1.
- Consider a false QBF formula

$$Q_1x_1\ldots Q_ix_i\ldots Q_jx_j\ldots Q_nx_n. F,$$

where F is a quantifier free CNF formula over variables x_1, \ldots, x_n , each $Q \in \{\exists, \forall\}$.

Introduction

- QBFs are propositional formulas with Boolean quantifiers ranging over 0, 1.
- Consider a false QBF formula

$$Q_1x_1 \dots Q_ix_i \dots Q_jx_j \dots Q_nx_n$$
. F ,

where F is a quantifier free CNF formula over variables x_1, \ldots, x_n , each $Q \in \{\exists, \forall\}$.

- We say x_i is on left of x_i or x_i is before x_i .
- Proof systems based on resolution for QBF formulas are called QBF resolution.
- We now define an important QBF resolution (Q-resolution)
 and show that size-width, and space-width relation fails for it.

Q-resolution: Definition

- Q-Res = resolution + \forall -reduction [Kleine Büning, Karpinski, and Flögel; Information and Computation, 1995].
- Q-Res proof system proofs the falseness of QBF formulas.
- Q-Res has two inference rules:
 - **Resolution rule**: $\frac{C \lor x}{C \lor D}$, where x is existential literal and $C \lor D$ is not a tautology.
 - \forall -reduction: $\frac{C \vee x}{C}$, where x is universal variable, and all existential variable in C are before x in the prenex of the given QBF formula.

Q-Res Proof

- Let $\mathcal{F} = \mathcal{Q}_1 x_1 \dots \mathcal{Q}_n x_n F$ be a false QBF formula.
- A Q-Res proof for \mathcal{F} is a sequence of clause $\pi = C_1, C_2, \dots, C_m$ such that:
 - \bullet C_m is the empty clause.
 - Each C_i is either from F <u>or</u> is derived from previous clauses using one of the above inference rules.
- Once again we have proof graph G_{π} .
- If G_{π} is a tree, then π is called a tree-like Q-Res proof for \mathcal{F} .

Examples 1

Consider the false formula

$$\mathcal{F} = \exists e \forall u. (e \lor u) \land (\neg e \lor \neg u)$$

 The Q-Res proofs first derive the clause (e) and (¬e) by ∀-reduction and then apply resolution rule to derive the empty clause.

Examples 2

Consider the false formula

$$\mathcal{F} = \forall u_1 \exists e_1 \forall u_2 \exists e_2.$$

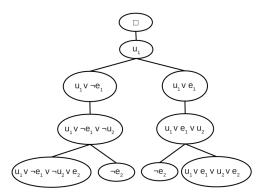
$$(u_1 \lor e_1 \lor u_2 \lor e_2) \land (u_1 \lor \neg e_1 \lor \neg u_2 \lor e_2) \land (\neg e_2)$$

Examples 2

Consider the false formula

$$\mathcal{F} = \forall u_1 \exists e_1 \forall u_2 \exists e_2.$$

$$(u_1 \lor e_1 \lor u_2 \lor e_2) \land (u_1 \lor \neg e_1 \lor \neg u_2 \lor e_2) \land (\neg e_2)$$



Complexity Measures for Q-Res

- Keep the definition of size, width and space same as that of resolution proof system.
- That is, $w(\mathcal{F}) = \max\{w(C) : C \in F\}$,
- Let $S(|_{\overline{Q-Res}}\mathcal{F}) = \min\{size(\pi) : \pi|_{\overline{Q-Res}}\mathcal{F}\}.$
- $w(|_{\overline{O-Res}} \mathcal{F}) = \min\{w(\pi) : \pi|_{\overline{O-Res}} \mathcal{F}\}.$

Outline

- Resolution Proof System
- 2 Complexity Measures for Resolution
- 3 Size-width Relation: An Important Lower Bound Technique for Resolution
- 4 QBF Resolution
- 5 Size-width and Space-width Relation Fails in Q-Resolution

Size-width Relation Fails

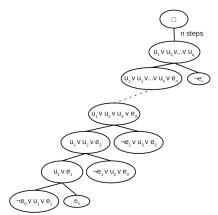
• Consider the following false QBF formula:

$$\mathcal{F}_n = \forall u_1 \dots u_n \exists e_0 \exists e_1 \dots e_n . (e_0) \land \bigwedge_{i \in [n]} (\neg e_{i-1} \lor u_i \lor e_i) \land (\neg e_n)$$

Size-width Relation Fails

• Consider the following false QBF formula:

$$\mathcal{F}_n = \forall u_1 \dots u_n \exists e_0 \exists e_1 \dots e_n.(e_0) \land \bigwedge_{i \in [n]} (\neg e_{i-1} \lor u_i \lor e_i) \land (\neg e_n)$$



Size-width Relation Fails (Cont.)

- Above examples illustrates that it is easy to accumulate universal variables in one clause which makes the width large but has a short proofs.
- Natural question: just count existential variables and then ask about size-width relation.
- $w_{\exists}(C) = \text{number of existential literals in } C$.
- $w_{\exists}(|_{\overline{O-Res}}\mathcal{F}) = \min\{w_{\exists}(\pi) : \pi|_{\overline{O-Res}}\mathcal{F}\}.$

Negative Results: Size-existential-width and Space-existential-width Relation Fails in tree-like Q-Res

Theorem

There exists a false QBF formula \mathcal{F}_n over $O(n^2)$ variables such that:

- $S_T(|_{\overline{Q-Res}}\mathcal{F}_n) = n^{O(1)}$,
- $w_{\exists}(\mathcal{F}_n)=3$,
- $w_{\exists}(|_{Q-Res} \mathcal{F}_n) = \Omega(n)$.
- $CSpace(|_{\overline{O-Res}}\mathcal{F}_n) = O(1).$
- Note that \mathcal{F}_n has $O(n^2)$ variables, they do not rule out size-existential-width relation in general Q-Res proof system.

Negative Results: Size-existential-width Relation Fails in Q-Res

Theorem

There exists a false QBF formula ϕ_n over O(n) variables such that:

- $S(|_{Q-Res} \phi_n) = n^{O(1)}$,
- $w_{\exists}(\phi_n) = 3$,
- $w_{\exists}(|_{\Omega_{-Res}}\phi_n) = \Omega(n)$.
- ϕ_n is known to be hard for tree-like Q-Res, so it can not be used to disprove size-existential-width relation in tree-like Q-Res.

Resolution Proof System Complexity Measures for Resolution Size-width Relation: An Important Lower Bound Technique for Resolution

Thank you.