
Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Proof Complexity of MaxSAT

Anil Shukla

Indian Institute of Technology Ropar

Complexity Theory Update Meeting
IMSc Chennai

January 23, 2026

Anil Shukla Proof Complexity of MaxSAT 23/01/26 1 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Credits

The credit for my understanding on MaxSAT proof systems −
Sravanthi Chede IIT Ropar, Rupnagar, India.

Swagato Sanyal University of Sheffield, UK.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 2 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Talk Contents

1 Basic Notations

2 MaxSAT resolution: Artificial Intelligence 2007

3 MaxSAT resolution with inclusion redundancy: SAT 2024

4 Redundancy rules for MaxSAT: SAT 2025

5 Polynomial Calculus for MaxSAT: SAT 2023 (Journal version: Artificial
Intelligence 2024)

6 Conclusion and Open Problems

Anil Shukla Proof Complexity of MaxSAT 23/01/26 3 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Proof Systems

A proof system f : ∆∗ → Σ∗ for a language L ∈ Σ∗ is a
polynomial-time computable function such that the range of f is L.

For x ∈ L, if f (w) = x , then w is an f -proof of the fact that x ∈ L.
|w | is the length of the proof.

Soundness: For any x ∈ Σ∗ and w ∈ ∆∗, if f (w) = x , then x ∈ L.

Completeness: For every x ∈ L, there must exists w ∈ ∆∗ such that
f (w) = x .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 4 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Proof Systems

Let f and g are two proof systems for a language L.

f simulates g if there is a computable function A that transforms the
proofs in g to proofs in f with at most a polynomial blow in size.

If A is polynomial time computable, then f p-simulates g .

f and g are p-equivalent if both can p-simulates each other.

If f p-simulates g but g does not p-simulate f then we say that f is
strictly stronger than g .

f and g are incomparable if both cannot p-simulates each other.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 5 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Proof Systems

Proof systems for the language L = UNSAT are called propositional
poof systems.

Several propositional proof systems have been defined in literature.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 6 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Propositional proof systems

ResolutionNullstellensatz

Polynomial Calculus

Cutting Planes

Sherali-Adams

Lasserre’s SOS

Positivellensatz calculus
Bounded-Depth frege

Constant-Depth frege

Frege

eFrege ER ≡ SR ≡ PR ≡ SPR ≡ RAT ≡ BC

SR−

PR−

SPR−

RAT−

BC−

IPS-Hilbert

PC-Resolution

Nodes:

A
Dynamic
Proof System

A
Static
Proof System

Edges:

A B : A is strictly stronger than B

A B
: A p-simulates B
& Open if B can p-simulate A?

A B : A and B are incomparable

A B : A and B are p-equivalent

Anil Shukla Proof Complexity of MaxSAT 23/01/26 7 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Resolution (Res) Proof System [Blake 1937, Davis and
Putnam 1960, Robinson 1965]

Resolution rule: (C∨x) (D∨¬x)
(C∨D) , here C and D are any clauses.

Let F be an unsatisfiable CNF formula.
A Resolution proof π of F is a sequence of clauses

D1,D2, . . . ,Dk

such that the last clause Dk is the empty clause (i.e. □)
and each Di obeys one of the following:

Di ∈ F
Di is derived from clauses Dk ,Dj , with j , k < i via the resolution rule.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 8 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Reverse Unit Propogation [Goldberg and Novikov 2003]

Unit propagation (UP): Unit propagation satisfies the unit clauses
of the CNF formula F by assigning their literal to true. Until you get
a fix point or a conflict (x and ¬x both become true for some variable
x).

Given an assignment β, F |β denotes the CNF formula F ′ without the
clauses of F satisfied by β and without the literals in the clauses of F
falsified by β.

Let F be a CNF formula and C a clause. Let α be the smallest
assignment that falsifies C . We say that C is implied by F through
UP (denoted F 1 C) if UP on F |α results in a conflict.

F 1 C is known as Reverse Unit Propagation.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 9 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT proof systems

MaxRes [1]

MaxRes-S [2]

MaxRes-SV [2]

cost-SPR [3]

cost-PR [3]

cost-SR [3]

Clause Tableau [4]

PC [5]

MaxRes+iBC [6]

MaxRes+iLPR [6]

MaxRes+iSPR [6]

MaxRes+iPR [6]

MaxRes+iSR [6]Papers:

[1]: Bonet et al., SAT 2006 & Artif. Intell., 2007

[2]: Larrosa & Rollon, SAT 2020

[3]: Bonacina et al., SAT 2025

[4]: Li et al., IJCAI 2016

[5]: Bonacina et al., SAT 2023 & Artif. Intell., 2024

[6]: Bonacina et al., SAT 2024

Anil Shukla Proof Complexity of MaxSAT 23/01/26 10 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT proof systems

MaxSAT is an optimization version of SAT.

Given a CNF formula F , MaxSAT problem asks to find an assignment
of values to Boolean variables that maximizes the number of satisfied
clauses in F .

Equivalently, it asks for an assignment of values to the Boolean
variables of F that minimizes the number of unsatisfied clauses in F .

We denote the minimum number of unsatisfiable clauses in F as
min-unSAT(F).

The resolution-based MaxSAT proof system (MaxRes) was designed
by Bonet, Levy, and Manyà (Artifial Intelligence 2007).

It has one rule: the MaxSAT resolution rule.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 11 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

The MaxSAT resolution rule (Bonet, Levy, and Manyà 2007)

(x ∨ a1 ∨ a2 ∨ · · · ∨ as)

(¬x ∨ b1 ∨ b2 ∨ · · · ∨ bt)

−−−−−−−−−−−−−−−−−−−
a1 ∨ a2 ∨ · · · ∨ as ∨ b1 ∨ b2 ∨ · · · ∨ bt

x ∨ a1 ∨ a2 ∨ · · · ∨ as ∨ ¬b1
x ∨ a1 ∨ a2 ∨ · · · ∨ as ∨ b1 ∨ ¬b2
· · ·
x ∨ a1 ∨ a2 ∨ · · · ∨ as ∨ b1 ∨ b2 ∨ · · · ∨ bt−1 ∨ ¬bt
¬x ∨ b1 ∨ b2 ∨ · · · ∨ bt ∨ ¬a1
¬x ∨ b1 ∨ b2 ∨ · · · ∨ bt ∨ a1 ∨ ¬a2
· · ·
¬x ∨ b1 ∨ b2 ∨ · · · ∨ bt ∨ a1 ∨ a2 · · · ∨ as−1 ∨ ¬as

Anil Shukla Proof Complexity of MaxSAT 23/01/26 12 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

The MaxSAT resolution rule: Example (taken from Bonet, Levy,

and Manyà 2007 [1])

F = (a) ∧ (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c)

F MaxRes (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ ()

Min-unSAT(F)= 1, min-unSAT assignment: a = b = c = 1
Anil Shukla Proof Complexity of MaxSAT 23/01/26 13 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

The MaxSAT resolution rule

MaxSAT resolution rule is applied to multisets of clauses.

the hypothesis of the rule are replaced by its conclusions.

We say that the rule cuts the variable x .

The tautological clauses from the conclusions are removed.

Repeated literals in a clause are collapsed into one.

Let C and D are two multisets of clauses.

C ⊢ D: denotes that D can be obtained from C by applying the
MaxSAT resolution rule finitely many times.

We write C ⊢x D when the sequence of MaxSAT resolution rule cuts
the variable x only.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 14 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Soundness

Theorem

The MaxSAT resolution rule is sound.

Proof:

We need to show that the rule preserves the number of unsatisfied
clauses for every truth assignment.

Let I be any assignment.

I cannot falsify both the hypothesis: H1 : (x ∨ a1 ∨ · · · ∨ as) and
H2 : (¬x ∨ b1 ∨ · · · bt).
Let I satisfies H1 and falsifies H2 =⇒ I (x) = 1 & I (bj) = 0,∀j ∈ [t].
Case 1: I (aj) = 0,∀j ∈ [s]: I only falsifies (a1 ∨ · · · ∨ as ∨ b1 · · · ∨ bt)
and satisfies all other.
Case 2: I satisfies at least one literal aj ’s: say ai = 1 be the smallest
which is set to 1 by I . Then I falsifies only
(¬x ∨ b1 ∨ · · · bs ∨ a1 ∨ · · · ∨ ai−1 ∨ ¬ai) and satisfies remaining.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 15 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Soundness continue

If I falsifies H1 : (x ∨ a1 ∨ · · · ∨ as) and satisfies H2 : (¬x ∨ b1 ∨ · · · bt),
by similar argument, I falsifies only one conclusion.

Suppose, I satisfies both the hypothesis H1 and H2. Suppose,
I (x) = 1. Then, for some j , I (bj) = 1. Then I satisfies all
conclusions, since bj or x is present in all the conclusions.

This proves that the MaxSAT resolution is sound.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 16 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Saturating multi-set of clauses

The concept of saturation was introduced for the resolution proof
system.

Given a set of clauses and a variable, we can saturate the set of
clauses by cutting the variables exhaustively, obtaining a superset of
the given clauses.

Resolution algorithm: repeat the above process for all the variables.
We obtain the empty clause, whenever the original set of clauses is
unsatisfiable.

Saturating a multiset of clauses using MaxRes resolution rule is not
simple: saturate a multiset of clauses with one variable, and then
saturate with another variable, the resulting multiset is not saturated
with both the variables.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 17 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Saturating multiset of clauses

Definition (Bonet, Levy, and Manyà 2007)

A multiset of clauses C is said to be saturated w.r.t. x if for every pair of
clauses C1 = x ∨A and C2 = ¬x ∨B of C, there is a literal ℓ such that ℓ is
in A and ¬ℓ is in B.
A multiset of clauses C′ is a saturation of C w.r.t. x if C′ is saturated w.r.t.
x and C ⊢x C′. That is, C′ can be obtained from C using MaxSAT
resolution rule cutting x finitely many times.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 18 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Saturating multiset of clauses

Lemma (Bonet, Levy, and Manyà 2007)

For every multiset of clauses C and variable x, there exists a multiset C′
such that C′ is a saturation of C w.r.t. x.
Moreover, this multiset C′ can be computed by applying the MaxSAT
resolution rule to any pair of clauses x ∨ A and ¬x ∨ B with the restriction
that A ∨ B is not a tautology, using any ordering of the literals, until we
cannot apply the inference rule any longer with the restriction.

Proof.

Just apply the MaxSAT resolution rule cutting x non-deterministically,
until we obtain a saturated multiset.
We only need to prove that this process terminates in finitely many
inference steps.
We show this by defining a simple characteristic function for multiset of
clauses.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 19 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Saturating multiset of clauses

Definition

For every clause C = x1 ∨ · · · ∨ xs ∨ ¬xs+1 ∨ · · · ∨ ¬xs+t we define its
characteristic function as

PC (
−→x) = (1− x1) · · · (1− xs)xs+1 · · · xs+t

. For multiset of clauses C = {C1, · · · ,Cm}, define its characteristic
function PC =

∑n
i=1 PCi

(−→x).

Clearly, for every assignment I , PC(I) is the number of clauses of C
falsified by I .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 20 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Proof continues

At every step of MaxSAT resolution, we can divide the resulting
multiset Ci into two multisets: Ei with all clauses that do not contain
x and Di with all clauses that contain the variable x .

The MaxSAT resolution rule takes two clauses of Di and replaces it
with a set of clauses, where one clause, say A does not contain the
variable x .

Therefore, we obtain Ci+1 = Di+1 ∪ Ei+1, where Ei+1 = Ei ∪ A.

As A is not a tautology, PA is not 0.

Since, the rule is sound, PCi+1
= PCi and PEi+1

= PEi + PA.

Therefore, we have PDi+1
= PDi

− PA and PDi+1
< PDi

.

Thus the number of MaxSAT resolution step cannot be infinite.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 21 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Saturating multi-set of clauses

Lemma (Bonet, Levy, and Manyà 2007)

Let C be a saturated multiset of clauses w.r.t. x. Let C′ be the subset of
clauses of C not containing x. Then any assignment I satisfying C′ (and
not assigning x) can be extended to an assignment satisfying C.

Proof: I is satisfying C′, we need to give value to x such that it satisfy the
entire C. If x has a unique polarity in C \ C′, then the extension is trivial.
If for every clause (x ∨ A) or (¬x ∨ A), I already satisfies A, then just
extend x arbitrary.
Otherwise, there is a clause (x ∨ A) ∈ C \ C′ such that I falsifies A. Set
x = 1. All clauses of the form x ∨ B will be satisfied. Since C is saturated
all clauses of the form ¬x ∨ B also gets satisfied: since negation of some
literal ℓ ∈ A must be present in B. □.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 22 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness

Theorem (Bonet, Levy, and Manyà 2007)

For any multi-set of clauses C, we have

C ⊢ □,□, · · · ,□︸ ︷︷ ︸
m

,D

where □ denotes empty clause, D is a satisfiable multi-set of clauses, m is
the minimum number of unsatisfied clauses of C.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 23 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness proof

Proof.

Let x1, · · · , xn be variables list of C. We construct two sequences of
multisets C0, · · · Cn and D1, · · · ,Dn+1 such that

C = C0,
for i = 1, · · · , n, Ci ∪ Di is a saturation of Ci−1 w.r.t. xi , and

for i = 1, · · · , n, Ci is a multiset of clauses not containing x1, · · · , xi ,
and Di is a multiset of clauses containing the variable xi .

We compute this as follows: saturate Ci−1 w.r.t. xi and then partition the
resulting multi-set into subsets Di containing xi and Ci not containing xi .
Note: Cn does not contains any variables. So, Cn is either an empty
subset, or it contains some empty clauses {□, · · · ,□}.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 24 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness proof continue

Proof.

We show that D = ∪ni=1Di is satisfiable (proof idea below).

Since, MaxSAT resolution rule is sound, and D is satisfiable, we have
m = |Cn| is the minimum number of unsatisfied clauses of C.

Lemma

D = ∪ni=1Di is satisfiable.

Proof Idea: Let Ei = Di ∪ · · · ∪ Dn, for i ∈ [n] and En+1 is ∅.
Let In+1 is the empty assignment which satisfies En+1 = ∅.
Using previous lemma, we can construct Ii by extending Ii+1 with an
assignment for xi such that Ii satisfies Ei . This is easy as Ei is saturated
w.r.t. xi .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 25 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

An algorithm for MaxSAT (Bonet, Levy, and Manyà 2007)

Data: C
/* the input C is a multi-set of clauses */

C0 = C;
for i = 1 to n do
C = saturation(Ci−1, xi);
(Ci ,Di) = partition(C, xi);

end
m = |Cn|;
I = ∅;
for i = n downto 1 do

I = I ∪ [xi → extention(xi , I ,Di)];
end
output: m, I

Anil Shukla Proof Complexity of MaxSAT 23/01/26 26 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Analysis of the MaxSAT algorithm

Theorem

For any multiset C with k clauses on n variables, we can deduce
C ⊢ □,□, · · · ,D, where D is satisfiable, in less than n · k · 2n inference
steps. Moreover, the search of this proof can also be done in time O(m2n).

Anil Shukla Proof Complexity of MaxSAT 23/01/26 27 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Redundancy rules

Redundancy rules were introduced in SAT solving to allow the
introduction of clauses that preserves satisfiability even though they
are not logical equivalent.

Redundant clauses formalize the notion of reasoning “without loss of
generality”.

It reduces the space of solutions without killing it entirely.

Blocked clauses (BC) and RAT (Resolution Asymmetric Tautologies)
are the first redundancy rules studied in the literature.

Researchers have tried to extend these redundancy rules for MaxSAT
problem as well.

We see two such results in this talk.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 28 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT Resolution with Inclusion Redundancy (Bonacina,

Bonet, and Lauria 2024)

In the SAT problem, for a CNF formula F , we say that a clause C is
redundant if F is satisfiable if and only if F ∪ C is satisfiable.

Similar for the MaxSAT problem, we say that for a multiset of clauses
S , a clause C is redundant if min-unSAT(S) = min-unSAT(S ∪ C).
Note: we can add any number of C in S without changing the answer
of the min-unSAT problem.

We need the following definitions.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 29 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Substitution

Definition

A substitution σ for a set of variables X is a function so that σ(x) is either
0, 1 or some literal defined in X (a literal is either a variable x or ¬x).
For convenience, we extend this to σ(0) = 0, σ(1) = 1, and
σ(¬x) = ¬(σ(x)), for any variable x ∈ X .

The composition of two substitutions σ, τ is the substitution σ ◦ τ , where
σ ◦ τ(x) = σ(τ(x)) for x ∈ X .

For example, consider 3 variables x1, x2, x3, substituitions could be
σ := {x1 = ¬x2, x2 = 0, x3 = x3} and τ := {x1 = x3, x2 = x1, x3 = ¬x3}.

The composition of σ ◦ τ := {x1 = x3, x2 = ¬x2, x3 = ¬x3}

Anil Shukla Proof Complexity of MaxSAT 23/01/26 30 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Assignments

A substitution σ is an assignment when σ(x) ∈ {0, 1, x} for any
variable x ∈ X .

A domain of any assignment σ is dom(x) = σ−1({0, 1})
σ is a total assignment over X if X is its domain.
That is, σ maps all variables in X to Boolean values.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 31 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Restrictions

Let C = ∨iℓi and σ a substitution. Then,
C |σ = σ(C) = ∨iσ(ℓi)

D ∨ 0 = D,D ∨ 1 = 1,D ∨ ℓ ∨ ℓ = D ∨ ℓ.

If C |σ = 1 or C |σ is a tautology, then σ satisfies C (denoted σ ⊨ C).
For example, if C = (x1 ∨ x2 ∨ ¬x3) and σ := {x1 = ¬x2, x2 = x2,
x3 = ¬x3}. Then, C |α = (¬x2 ∨ x2 ∨ x3) is a tautology.

The restriction of a multiset of clauses Γ by a substitution σ is
Γ|σ = {C |σ | C ∈ F ,C |σ ̸= 1}

We say that σ satisfies Γ (σ ⊨ Γ) if for all C ∈ Γ, σ ⊨ C .

We say that Γ ⊨ C if for every substitution σ, if σ ⊨ Γ then σ ⊨ C .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 32 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Inclusion Substitution Redundant, iSR

In the UNSAT domain: A Clause C is SR w.r.t. a CNF S if there exists a
substituition σ such that σ |= C and (S)|C 1 S |σ

Definition (Bonacina, Bonet, Lauria 2024)

A clause C is Inclusion Substitution Redundant (iSR) w.r.t a multiset of
clauses S if there exists a substitution σ such that

(S ∪ {C})|σ ⊆ S |C

C denotes the least assignment falsifying C .
For example, if C = (x ∨ ¬y ∨ z) then C = {x = 0, y = 1, z = 0}.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 33 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Inclusion Substitution Redundant, iSR

In the UNSAT domain: A Clause C is SR w.r.t. a CNF S if there exists a
substituition σ such that σ |= C and (S)|C 1 S |σ

Definition (Bonacina, Bonet, Lauria 2024)

A clause C is Inclusion Substitution Redundant (iSR) w.r.t a multiset of
clauses S if there exists a substitution σ such that

(S ∪ {C})|σ ⊆ S |C

C denotes the least assignment falsifying C .
For example, if C = (x ∨ ¬y ∨ z) then C = {x = 0, y = 1, z = 0}.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 33 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

iSR rule is sound

A clause C is Inclusion Substitution Redundant (iSR) w.r.t a multiset of
clauses S if there exists a substitution σ such that (S ∪ {C})|σ ⊆ S |C

Lemma

If a clause C is iSR w.r.t. a multiset of clauses S, then C is redundant
w.r.t. S. That is, then min-unSAT(S) =min-unSAT(S ∪ {C}).

Proof:

Clearly min-unSAT(S) ≤min-unSAT(S ∪ {C}).
If C is iSR, we show that min-unSAT(S ∪ {C}) ≤ min-unSAT(S).

Let min-unSAT(S) = k and β is a total assignment such that
|S |β| = |{□, · · · ,□}| = k. If β ⊨ C , then we are done.

So, now suppose that C |β = □. Clearly β extends C .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 34 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

iSR rule is sound (contd.)

A clause C is Inclusion Substitution Redundant (iSR) w.r.t a multiset of
clauses S if there exists a substitution σ such that (S ∪ {C})|σ ⊆ S |C

Proof continues:

As C is an iSR, there exists a substitution σ such that
(S ∪ {C})|σ ⊆ S |C .
Therefore, (S ∪ {C})|β◦σ ⊆ S |β◦C = S |β.
And we have |(S ∪ {C})|β◦σ| ≤ |S |β| = k.

We have a total assignment β ◦ σ which produces k empty clause
when restricted on S ∪ C . min-unSAT is minimum over all.

Therefore, min-unSAT(S ∪ C) ≤ k.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 35 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT-Resolution + iSR

Definition (Bonacina, Bonet, Lauria 2024)

A sequence of multisets (Si)i∈[m] is a derivation of (Sm) from (S1) in
MaxSAT-Resolution + iSR if for each i ∈ [m] either Si+1 is derived using
the MaxSAT resolution rule from one of the already derived multisets
(Si), · · · (S1) or

Si+1 = Si ∪ {C}, where C is iSR w.r.t. Si ;

Si+1 = Si \ {C} where C is iSR w.r.t. Si \ {C}.

Soundness: Since both the MaxSAT resolution rule and iSR are sound,
we know that min-unSAT(S1) =min-unSAT(Sm). If (Sm) contains □ with
multiplicity at least k , the derivation certifies that min-unSAT(S1) ≥ k.

Completeness: Since MaxSAT resolution proof system is complete.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 36 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Redundancy rules for MaxSAT Bonacina, Bonet, Buss, and Lauria

2025

MaxSAT-Resolution + iSR proves min-unSAT(F) ≥ k.

Bonacina, Bonet, Buss, and Lauria SAT-2025 introduced different
redundancy proof systems (cost-SR) for MaxSAT.

These cost-SR systems prove min-unSAT(F) = k.

These proof systems work with hard clauses and blocking variables.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 37 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Soft and hard clauses

Hard clauses: clauses which must be satisfied.

Soft clauses: clauses which can be falsified.

F = H ∧ S where H,S are multi-sets of hard clauses and soft clauses,
respectively.

The generalized MaxSAT problem asks to find the maximum number
of clauses in S that can be simultaneously satisfied by an assignment
that satisfies all clauses in H.

The problem is not defined if H is unsatisfiable.

H may be set or multi-set: Not relevant.

Multiplicity of clauses in S is relevant.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 38 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT with blocking variables

Without loss of generality, we can assume that all soft clauses in a
MaxSAT instance are unit clauses.

Definition

Let F = H ∧ S , with S = {C1 ∧ · · · ∧ Cm}. The blocking variable
formulation of F is F ′ = H ′ ∧ S ′ where,

H ′ = H ∧ (C1 ∨ b1) ∧ · · · ∧ (Cm ∨ bm),

S ′ = b1 ∧ · · · ∧ bm,

b1, · · · , bm are new variables (called blocking variables) not appearing in
F . We say that Γ is a MaxSAT instance encoded with blocking variables,
when it is given as a set of hard clauses of the form as in H ′ above. The
soft clauses then are implicit.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 39 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT instance with blocking variables

Lemma

Let F = H ∧ S be a MaxSAT instance and F ′ = H ′ ∧ S ′ be the blocking
variable formulation of F .

Then, any assignment satisfies H and falsifies k clauses in S can be
extended to an assignment that satisfies H ′ and sets k blocking
variables to true.

Vice versa, any assignment that satisfies H ′ and sets k blocking
variables to true, satisfies H too and falsifies at most k clauses in S.

Recall: F = H ∧ S , where S = {C1 ∧ · · · ∧ Cm}.
H ′ = H ∧ (C1 ∨ b1) ∧ · · · (Cm ∨ bm)
S ′ = b1 ∧ · · · bm.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 40 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Equivalent problem to MaxSAT

Finding min-unSAT(H ∧ S) is reduced to the problem of finding a
satisfying assignment of H ′ that sets the least number of blocking
variables to true.

In the rest of this talk, Γ denotes the MaxSAT instance encoding with
blocking variables (i.e., H ′ ∧ S ′) of F = H ∧ S .
Note: Γ is given as a set of hard clauses H ′ only. (S ′ is implicit).

Given a total assignment α for Γ, we define

cost(α) =
m∑
i=1

α(bi) and cost(Γ) = min
α:α⊨Γ

cost(α)

Clearly, min-unSAT(H ∧ S) ≡ cost(Γ).

Anil Shukla Proof Complexity of MaxSAT 23/01/26 41 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Cost substitution redundant (cost-SR)

Definition (redundant clause)

A clause C is redundant w.r.t. a MaxSAT instance Γ when

cost(Γ) = cost(Γ ∪ {C}). (1)

The condition in equation (1) is not polynomial-time checkable. The goal
is to consider efficiently certifiable notion of redundancy.

Definition (Bonacina, Bonet, Buss, Lauria 2025)

A clause C is cost substitution redundant (cost-SR) w.r.t. Γ if there exists
a substitution σ such that

Γ|C 1 (Γ ∪ {C})|σ (redundancy)

for all total assignment τ ⊇ C , cost(τ ◦ σ) ≤ cost(τ) (cost)

When the substitution σ above is partial assignment with the same domain
as C , we call the rule as cost-SPR (subset propagation redundant) rule.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 42 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

A clause C is cost substitution redundant (cost-SR) w.r.t. Γ if there exists
a substitution σ such that

Γ|C 1 (Γ ∪ {C})|σ (redundancy)

for all total assignment τ ⊇ C , cost(τ ◦ σ) ≤ cost(τ) (cost)

Lemma

If C is cost-SR w.r.t. Γ, then C is redundant w.r.t. Γ.

Proof:
Clearly, cost(Γ) ≤ cost(Γ ∪ {C}). We show that cost(Γ) ≥ cost(Γ ∪ {C}).
Let cost(Γ) = k.
Let α is an optimal total assignment that satisfies Γ and sets to true
exactly k blocking variables. If α satisfies C , then we are done. Since,
then α ⊨ Γ ∪ {C} and cost(α) = k.
Otherwise, α extends C and, by assumption, there is a substitution σ such
that cost(α ◦ σ) ≤ cost(α) = k .
If α ◦ σ ⊨ Γ ∪ {C}, then we are done: cost(Γ ∪ {C}) ≤ k = cost(Γ).

Anil Shukla Proof Complexity of MaxSAT 23/01/26 43 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

A clause C is cost substitution redundant (cost-SR) w.r.t. Γ if there exists
a substitution σ such that

Γ|C 1 (Γ ∪ {C})|σ (redundancy)

for all total assignment τ ⊇ C , cost(τ ◦ σ) ≤ cost(τ) (cost)

We only need to show that α ◦ σ ⊨ Γ ∪ {C}.
By assumption, we have

Γ|C 1 (Γ ∪ {C})|σ

Since, α ⊨ Γ and extends C . We have α ⊨ Γ|C .
From the above, the following must hold: α ⊨ (Γ ∪ {C})|σ. Equivalently,
α ◦ σ ⊨ Γ ∪ {C}. □

Lemma (cost-SR is polynomial time verifiable)

Let Γ be a MaxSAT instance, C a clause and σ a substitution. There is a
polynomial time algorithm to decide whether C is cost-SR w.r.t. Γ, given
the substitution σ.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 44 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

cost-SR calculus

Definition (Bonacina, Bonet, Buss, Lauria 2025)

The cost-SR calculus is a proof system for MaxSAT. A derivation of a
clause C from a MaxSAT instance Γ (encoded with blocking variable) is a
sequence of clauses D1,D2, · · · ,Dt , where C ∈ Γ ∪ {Di}i∈[t], and each Di

is either

already in Γ, or

is deduced using earlier clauses in the sequence using the resolution
rule, or

Di is a cost-SR w.r.t. Γ ∪ {D1, · · · ,Di−1} with var(Di) ⊆ var(Γ).

The length of such a derivation is t.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 45 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

cost-SR calculus

If we wish to certify that cost(Γ) ≥ s using cost-SR calculus, then we
can achieve this by deriving s distinct unit clauses of the form
{bi1 , · · · , bis}.

If the goal is to certify that cost(Γ) = s, then we can achive this by
proving a cost-SR derivation of the unit clauses {bi1 , · · · , bis} along
with the derivations of the unit clauses {¬bj : j ̸∈ {i1, · · · , is}}.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 46 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Soundness of cost-SR calculus

Theorem (Bonacina, Bonet, Buss, Lauria 2025)

Let Γ be a MaxSAT instance encoded with blocking variables. If there is a
cost-SR proof of k distinct blocking variables, then cost(Γ) ≥ k. If there is
a cost-SR proof of k distinct blocking variables {bi1 , · · · , bik} and all the
unit clauses ¬bj for j ̸∈ {i1, · · · , ik}, then cost(Γ) = k.

Proof:

Let {b1, · · · , bm} are the blocking variables of Γ.

Let Γ′ contains all the clauses in Γ plus all the clauses derived by the
cost-SR calculus.

In particular, Γ′ contains all unit clauses {bi1 , · · · , bik}.
Clearly, cost(Γ′) ≥ k.

Since, cost-SR calculus is sound, we have cost(Γ) = cost(Γ′) ≥ k . In
addition, if Γ′ also contains ¬b′js then cost(Γ′) = cost(Γ) = k. □

Anil Shukla Proof Complexity of MaxSAT 23/01/26 47 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness of cost-SR calculus

In fact we show the completeness of cost-SPR calculus. Recall, in
cost-SPR rule, the substitution σ must be a partial assignment with the
same domain as C .

Theorem

Let Γ be a MaxSAT instance encoded with blocking variables, of
cost(Γ) = k. There is a cost-SPR derivation of the unit clauses bi1 , · · · , bik
for some disctinct k blocking variables and all the ¬bj for ȷ ̸∈ {i1, · · · , ik}.

Proof:

Let {b1, · · · , bm} be the blocking variables of Γ.

Let αopt be an optimal total assignment, that is
αopt ⊨ Γ, cost(αopt) = k , and for every total assignment β such that
β ⊨ Γ, cost(β) ≥ k .

Without loss of generality αopt sets b1, · · · , bk to 1 and the remaining
b′js to 0.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 48 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness proof continues

Proof continue:

For any assignment γ, let γ be the largest clause falsified by γ.

For example, if γ = x ← 0, y ← 1, z ← 0, then γ = (x ∨ ¬y ∨ z).

Consider all total assignments γ, such that γ ⊨ Γ and are different
from αopt.

Let
Σ = {γ : γ is total assignment, γ ⊨ Γ, and, γ is different from αopt}.
We plan to derive Σ from Γ via cost-SPR rule. We do this by adding
the clauses of Σ one by one using the cost-SPR rule (see Lemma
below: the witnessing assignment for the cost-SPR is αopt).

Anil Shukla Proof Complexity of MaxSAT 23/01/26 49 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness proof continues

Proof continues:

After we have added all the clauses γ to Γ the only total assignment
satisfying Γ ∪ Σ is αopt .

Since resolution is complete, it is capable of deriving all the literal of
αopt: Γ∪Σ and (b1)∧ · · · ∧ (bk)∧ (¬bk+1)∧ · · · ∧ (¬bm) are logically
equivalent.

So, we have a cost-SPR derivations of bi , i ∈ [k] and ¬bj , j ̸∈ [k].

Only we need to prove the claim.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 50 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness proof continues

Lemma

Let γ be a total assignment satisfying Γ and different from αopt. γ is the
largest clause falsified by γ. Σ be the set of all clauses γ. Then any clause
γ ∈ Σ and any Σ′ ⊆ Σ, the clause γ is a cost-SPR w.r.t. Γ ∪ Σ′

Proof.

Here C is γ, and so C is γ. We need to provide a total assignment σ with
same domain as γ which satisfies the redundancy and the cost rules. Let
αopt be the required σ. We need to prove the following statements:

(Γ ∪ Σ′)|γ 1 (Γ ∪ Σ ∪ γ)|αopt .

for all total assignment τ ⊇ γ cost(τ ◦ αopt) ≤ cost(τ)).

First condition holds: (Γ ∪ Σ ∪ γ)|αopt is True.
Second condition holds: αopt is total and optimal.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 51 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Short cost-SR proofs of the pigeonhole principle

Let m > n ≥ 1. The pigeonhole principle from m pigeons and n holes,
with blocking variables (bPHPm

n) has the following formulation:

The totality clause: (pi ,j ∨ bi) for ı ∈ [m].

The injective clause: (pi ,j ∨ pk,j ∨ bi ,k,j) for 1 ≤ i < k ≤ m and
j ∈ [n].

Theorem (Bonacina, Bonet, Buss, Lauria 2025)

cost-SR proves cost(bPHPm
n) = m − n in polynomial size.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 52 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Polynomial Calculus for MaxSAT (Bonacina, Bonet, Levi 2023)

Let Fq be a finite field with q elements.

Let X be a set of variables.

Let Fq[X] denotes the ring of multivariate polynomials with
coefficients in Fq and variables in X .

Let f ∈ Fq[X] and α : X → Fq is an assignment. We say that f (α) is
the evaluation of f in α.

If f (α) = 0, we say that α satisfies the polynomial f .

The polynomial 1 represent the unsatisfiable polynomial.

The concept of hard and soft clauses can be extended to polynomials
as well.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 53 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Polynomial Calculus for MaxSAT

The set of polynomials H ⊂ Fq[X] are hard polynomials which must
be satisfied.

The set of soft polynomials

F = {[f1,w], · · · , [fm,wm]

where fi ∈ Fq[X] and wi ∈ N.
We are interested in assignments α that minimize the weight of
falsified soft polynomials in F , and satisfy all the polynomials in H.

We denote the calculus for this problem as (wPCFq ,N).

In this talk, we only discuss the (wPCF2,N) calculus

Anil Shukla Proof Complexity of MaxSAT 23/01/26 54 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

N-weighted Polynomial calculus wPCF2,N

The initial instance consists of multi-sets of weighted polynomials,
that is, pairs [f ,w] with f ∈ F2[X] and w ∈ N, and a set of hard
polynomials H.

We need an assignment α that satisfy all of H and minimize the
weights of falsified soft polynomials in F .

Before presenting the calculus wPCF2,N, we need some definitions.

Definition (H-compatible assignment)

Let H ⊂ F2[X]. An assignment α : X → F2 is H-compatible if for every
h ∈ H, h(α) = 0.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 55 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Definitions

For each assignment α : X → F2, we measure how close it is to satisfying
all the polynomials in F . We do this by defining the cost:

Definition

The cost of an assignment α : X → F2 on F is

cost(α,F) =
∑
i∈[m]

wiχi (α),

where χi (α) = 1 if fi (α) ̸= 0 and 0 otherwise.

We need to find the minimum cost for any H-compatible assignment α.

Definition

costH(F) = min
αH-compatible

cost(α,F).

If F is satisfiable using a H-compatible assignment, then costH(F) = 0.
Anil Shukla Proof Complexity of MaxSAT 23/01/26 56 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Encoding maxcut problem as weighted Polynomial
equations

Definition

Maxcut of a graph G = (V ,E): The largest possible number of
cross-edges (∈ E) you can get by partitioning the V into two separate sets.

Let X = {xv |xv ∈ V }, to partition these vertices into two sets, assign
each xv to either 0 or 1.

For cross-edges (u, v) ∈ E , xu = 0 & xv = 1 or vice-versa.

Consider the following equations

F := {[xu + xv + 1, 1] : (u, v) ∈ E}
cost(F) = max-cut(G)

Note: In F2: 1 + 1 = 0, so 1 + 1 + 1 = 1 ̸= 0, so such equations are not
satisfied.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 57 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

CNFs encoding as polynomials

The set of polynomials may come by encoding the CNFs.

We encode CNFs using twin variables.

We call twin variables the set of variables
X = {x1, · · · , xn, x ′1, · · · , x ′n}.
The meaning of x ′i = 1− xi .

For every clause C = {xi : i ∈ I} ∪ {¬xj : j ∈ J}, we associate a
monomial

M(C) =
∏
i∈I

x ′i
∏
j∈J

xj

in the twin variables X .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 58 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

CNFs encoding as polynomials

A set of clauses {C1, · · · ,Cm} can be encoded as

{M(C1), · · · ,M(Cm)} ∪ {x2i − xi , xi + x ′i − 1 : i ∈ [n]}

Any assignment α : {x1, · · · , xn} → {0, 1} can be extended to an
assignment β : X → {0, 1}, where for each ı ∈ [n], β(xi) = α(xi) and
β(x ′i) = 1− α(xi).

Then α satisfies a CNF formula if and only if β satisfies the
polynomial encoding of F (that is, β is a common solution of the
polynomials).

Recall: C = {xi : i ∈ I} ∪ {¬xj : j ∈ J}
M(C) =

∏
i∈I x

′
i

∏
j∈J xj

Anil Shukla Proof Complexity of MaxSAT 23/01/26 59 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Polynomial calculus for MaxSAT: wPCF2,N

Recall, F2 is a finite field with two elements {0, 1}.
For each element a ∈ F2, we have a2 = a, 2 · a = a+ a = 0.

An inference rule is sound, if for every assignment α, the cost of set
of hypothesis on α equals the cost of the conclusions on α.

There are two types of inference rules:
1) Structural rules: the Fold, Unfold and the H-simplification,
2) proper inference rules: Sum and Split.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 60 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Fold-unfold

Fold-unfold Let F ,G be two multi-sets of weighted polynomials, we say
that F and G are fold-unfold equivalent (F ≈ G), if one can
be derived by another using the following inference rules

Fold:
[f , u] [f ,w]

f , u + w

0-Fold
[f , 0]

Unfold:
[f , u + w]

[f , u] [f ,w]

0-Unfold:
[f , 0]

where, f ∈ F2 and u,w ∈ Z.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 61 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

H-equivalence

H-equivalence Two function f , g ∈ F2[X] are H-equivalence, if for every
H-compatible assignment α, f (α) = g(α). This can be seen
with the following inference rule:

H-equivalence
[f ,w]

[g ,w]

where f , g ∈ F2[X] and w ∈ Z are such that for every H-compatible
assignment α : X → F2, f (α) = g(α).

Note: Checking whether two polynomials f and g are H-equivalent
might be problematic. It depends on H.

When polynomials come from CNFs, the H-equivalence can be
checked efficiently.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 62 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Split

Split We also have the following inference rule in wPCF2,N and
wPCF2,Z:

Split
[f ,w]

[fg ,w] [f (g + 1),w]

for all f , g ∈ F2[X] and w ∈ Z.
Split rule is sound: if f (α) = 0, then both the conclusions f (α).g(α)
and f (α).(g(α) + 1) are 0.
If f (α) = 1, then exactly one of the conclusions is 1: if
f (α).g(α) = 1, then f (α).(g(α) + 1) = 0 (since 1 + 1 = 0)

Anil Shukla Proof Complexity of MaxSAT 23/01/26 63 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Sum rule

Sum wPCF2,N and wPCF2,Z also contains the following rule

Sum
[f ,w] [g ,w]

[f + g ,w] [fg , 2w]

where f , g ∈ F2[X] and w ∈ Z.
Sum rule is sound: similar to split, one can argue that the sum rule is
sound. We briefly explain why 2w appears in the conclusion.

It comes when both f (α) = 1 and g(α) = 1. In this case,
f (α) + g(α) = 0 and f (α).g(α) = 1. Therefore, the conclusion fg
should contain the sum of weights of both the hypothesis, which is
two.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 64 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

wPCF2,N and wPCF2,Z calculus

Definition (Bonacina, Bonet, Levi 2023)

Given a multi-set of weighted polynomials F and a set of hard constraints
H, a wPCF2,Z derivation of a weighted polynomial [f ,w] from F and H is
a sequence of multi-sets L0, · · · , Lℓ such that

L0 = F ,

[f ,w] ∈ Lℓ and all the other weighted polynomials [f ′,w ′] ∈ Lℓ have
w ′ ∈ N (they all have non-negative weights), and

for each i > 0 either Li ≈ Li−1 (fold-unfold equivalent) or Li is the
result of an application of the split/sum/H-equivalence rule on Li−1.

If all weights belong to N, we call the system as wPCF2,N. The size of a
wPCF2,N/wPCF2,Z derivation L0, · · · , Lℓ is the total number of
occurrences of symbols in L0, · · · , Lℓ.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 65 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Soundness of wPCF2,Z

Theorem

Given F = {[f1,w1], · · · , [fm,wm]} where fi ∈ F2[X] and a set of
polynomials H ⊆ F2[X], if there is a wPCF2,Z derivation of [1,w] from F
and H, then costH(F) ≥ w.

Proof.

Let L0, · · · , Ls be a wPCF2,Z derivation of [1,w].
Clearly, costH(LS) ≥ w : since [1,w] ∈ Ls and weights of all other
polynomials in Ls are non-negative.
Since all rules are sound, costH(F) ≥ w .

Anil Shukla Proof Complexity of MaxSAT 23/01/26 66 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness of wPCF2,N

Theorem (Bonacina, Bonet, Levi 2023)

Given F a set of weighted polynomials over F2[X], there is a wPCF2,N
derivation of [1, costH(F)] from F and hard constraints H.

The completeness proof uses the concept of saturation from the
MaxSAT resolution proof system.

Let us define saturation first.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 67 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

x-saturated set

Definition

We say a polynomial f depends on a variable x if for every polynomial g
not containing x (and also x ′ in case of twin variables), f ̸≡ g .

Definition (x-saturated set)

Let x ∈ X and S be a set of weighted polynomials. The set S is
x-saturated if every H-compatible assignment α : X → F2 can be modified
in x to a H-compatible assignment satisfying all weighted polynomials in S
that depends on x .

As in MaxSAT resolution proof system, there is an algorithm for saturation.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 68 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Completeness of wPCF2,N

Lemma

In the context of H the Boolean axiom, for every set of weighted
polynomials S and every variable x, there is a wPCF2,N derivation of a set
of polynomials S ′ which is x-saturated.

By iterating the saturation on all the variables one by one, the
completeness is straightforward.

Lemma

Let H ⊂ F2[X]. If for every set of weighted polynomials S and for every
variable x, there is a wPCF2,N derivation of a set of polynomials S ′ which
is x-saturated, then for every set of weighted polynomials F over F2[X]
there exists a wPCF2,N-derivation of [1, costH(F)] from F and the hard
constraints H.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 69 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Conclusion and Open Problems

In this talk, we have discussed four MaxSAT proof systems.

Open Problems:

Most of the simulation results among the discussed proof systems are
not known.

Does cost-SR p-simulate MaxSAT resolution proof system?

MaxSAT-Resolution + iSR vs MaxSAT-Resolution + cost-SR?

How to extend other propositional proof systems for MaxSAT?

Anil Shukla Proof Complexity of MaxSAT 23/01/26 70 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

MaxSAT proof systems

MaxRes [1]

MaxRes-S [2]

MaxRes-SV [2]

cost-SPR [3]

cost-PR [3]

cost-SR [3]

Clause Tableau [4]

PC [5]

MaxRes+iBC [6]

MaxRes+iLPR [6]

MaxRes+iSPR [6]

MaxRes+iPR [6]

MaxRes+iSR [6]Papers:

[1]: Bonet et al., SAT 2006 & Artif. Intell., 2007

[2]: Larrosa & Rollon, SAT 2020

[3]: Bonacina et al., SAT 2025

[4]: Li et al., IJCAI 2016

[5]: Bonacina et al., SAT 2023 & Artif. Intell., 2024

[6]: Bonacina et al., SAT 2024

Anil Shukla Proof Complexity of MaxSAT 23/01/26 71 / 72

Basic Notations MaxRes MaxRes+iSR cost-SR PC Conclusion

Thank you.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 72 / 72

References

Bibliography I

[1] Maria Luisa Bonet, Jordi Levy, and Felip Manyà. “Resolution for
Max-SAT”. In: Artif. Intell. 171.8-9 (2007), pp. 606–618.

[2] Javier Larrosa and Emma Rollon. “Towards a Better Understanding
of (Partial Weighted) MaxSAT Proof Systems”. In: SAT 2020.
Vol. 12178. Lecture Notes in Computer Science. Springer, 2020,
pp. 218–232.

[3] Ilario Bonacina et al. “Redundancy rules for MaxSAT”. In: 28th
International Conference on Theory and Applications of Satisfiability
Testing, SAT 2025. 2024.

[4] Chu Min Li, Felip Manyà, and Joan Ramon Soler. “A Clause Tableau
Calculus for MaxSAT”. In: IJCAI 2016. Ed. by
Subbarao Kambhampati. IJCAI/AAAI Press, 2016, pp. 766–772.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 1 / 3

References

Bibliography II

[5] Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy. “Polynomial
Calculus for MaxSAT”. In: SAT 2023. Vol. 271. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 5:1–5:17.

[6] Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria. “MaxSAT
Resolution with Inclusion Redundancy”. In: SAT 2024. Vol. 305.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024,
7:1–7:15.

Anil Shukla Proof Complexity of MaxSAT 23/01/26 2 / 3

References

Cost-SR example

A clause C is cost substitution redundant (cost-SR) w.r.t. Γ if there exists
a substitution σ such that

Γ|C 1 (Γ ∪ {C})|σ (redundancy)

for all total assignment τ ⊇ C , cost(τ ◦ σ) ≤ cost(τ) (cost)

Let F = (x) ∧ (x) =⇒ H ′ := (x ∨ b1) ∧ (x ∨ b2)

C1 = (b1 ∨ b2 ∨ x) is cost-SR w.r.t. H ′ with σ = {x = 0, b2 = 0, b1 = 1}.
C = {b1 = 0, b2 = 1, x = 1}
the redundancy rule is trivially true with tautologies on both sides

for the cost rule, τ = C and both cost(α) = cost (τ) = 1.

By resolutions, derive (b1 ∨ b2), (b1 ∨ b2) and resolve again for (b1)

C2 = (b1 ∨ b2) is cost-SR with σ = {x = 0, b1 = 1, b2 = 0}.
Resolve to derive (b2). Therefore, Min-unSAT(F)= 1

Anil Shukla Proof Complexity of MaxSAT 23/01/26 3 / 3

	Basic Notations
	MaxSAT resolution: Artificial Intelligence 2007
	MaxSAT resolution with inclusion redundancy: SAT 2024
	Redundancy rules for MaxSAT: SAT 2025
	Polynomial Calculus for MaxSAT: SAT 2023 (Journal version: Artificial Intelligence 2024)
	Conclusion and Open Problems
	Appendix
	References

