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Basic Notations
00000

Proof Systems

@ A proof system f : A* — ¥Y* for a language L€ X" is a
polynomial-time computable function such that the range of f is L.

@ For x € L, if f(w) = x, then w is an f-proof of the fact that x € L.
|w| is the length of the proof.

@ Soundness: For any x € ¥* and w € A*, if f(w) = x, then x € L.

@ Completeness: For every x € L, there must exists w € A* such that
f(w) = x.
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Basic Notations
0e0000

Proof Systems

@ Let f and g are two proof systems for a language L. we say that f
simulates g if there is a computable function A that transforms the
proofs in g to proofs in f with at most a polynomial blow in size.

o If Ais polynomial time computable, then we say that f p-simulates
g.
@ f and g are p-equivalent if both can p-simulates each other.

o If f p-simulates g but g does not p-simulate f then we say that f is
strictly stronger than g.

@ We say that f and g are incomparable if both cannot p-simulates
each other.

@ Proof systems for the language UNSAT are called propositional poof
systems. For example, the Resolution proof system.
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Basic Notations
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Resolution (Res) Proof System [Blake 1937, Davis and

Putnam 1960, Robinson 1965]

@ Resolution rule: %, here C and D are any clauses.

@ Let F be an unsatisfiable CNF formula. A Resolution proof 7 of F is
a sequence of clauses
Di,Ds, ..., Dy
such that the last clause Dy is the empty clause and each D; obeys
one of the following
e D;eF

o D;j is derived from some clauses Dy, D;, with j, k < i via the resolution
rule.
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Basic Notations
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Reverse Unit Propogation [Goldberg and Novikov 2003]

e Unit propagation (UP): Unit propagation satisfies the unit clauses
of the CNF formula F by assigning their literal to true. Until you get
a fix point or a conflict (x and —x both become true for some variable
x ).

e Given an assignment «, F|, denotes the CNF formula F’ without the
clauses of F satisfied by o and without the literals in the clauses of F
falsified by o.

@ Let F be a CNF formula and C a clause. Let « be the smallest
assignment that falsifies C. We say that C is implied by F through
UP (denoted F | C) if UP on F|, results in a conflict.

o F lT C is known as Reverse Unit Propagation.
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Basic Notations
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Propositional Model Counting

@ For a given CNF formula F, the propositional model counting #SAT
problem asks to compute the number of satisfying assignments.

@ #SAT is one of the hardest known problems in the field of
computational complexity.

o In fact, Toda [1991] shows that with a single call to a #SAT oracle,
any problem in the polynomial hierarchy can be solved in polynomial
time.

@ In this talk, we focus on different proof systems for the propositional
model counting problem.

@ To be precise, we focus on different proof systems for the language
L={(F,k) | F has exactly k satisfying assignments}
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Basic Notations
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A Naive Proof Systems for #SAT

@ A naive proof system to prove that a CNF formula F has exactly k
satisfying assignment is to list the k satisfying assignments along with
a resolution proof of the CNF formula F’, where F’ consist of the
following clauses:
o All clauses of F belongs to F’.
e For each satisfying assignment « of F, there is a clause C, € F’, where
C, is the clause that has the unique falsifying assignment a.
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Basic Notations
00000e

A Naive Proof Systems for #SAT

@ A naive proof system to prove that a CNF formula F has exactly k
satisfying assignment is to list the k satisfying assignments along with
a resolution proof of the CNF formula F’, where F’ consist of the
following clauses:
o All clauses of F belongs to F’.
e For each satisfying assignment « of F, there is a clause C, € F’, where
C, is the clause that has the unique falsifying assignment a.

e Example: (x Vy) A (X V y), satisfying assignments are {x =0,y = 0}
and {x =1,y =1}.
F'i=(xVy)AXVy) A(xVy)A(XVY)
Res-proof of F’:
(xvy) (xvy) (vy) (xVvy)

(x) (%)
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MICE Proof System

@ Inspired from many #SAT solvers, Fitch et al. SAT-2022, designed a
proof system MICE (Model Counting Induction by Claim
Extension) for #SAT. A simplified and equivalent proof system
MICE’ is designed by Beyersdorff et al. SAT-2023. These systems work
with claims.

e Claims: A claim is a 3-tuple (F, A, ¢), where F is a CNF formula, A
is a partial assignment over the vars(F), and c is a count.

@ We say that a claim is correct if ¢ is equal to the number of satisfying
assignments of F|a.

Definition (MICE, Fitch et al. SAT-2022, Beyersdorff et al. SAT-2023)

A MICE proof of a CNF formula F is a sequence of claims /1, b, ..., Iy that
are derived from inference rules Axiom, Composition, Join, and Extension,
such that the final claim /y is a correct claim of the form (F, 0, c).
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MICE
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Inference rules of MICE

o Axioms:
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MICE
00000000

Inference rules of MICE

@ Axioms:
(0.0,1)
o Composition:
(F7A17C1) (F7An7Cn)
(Fv A7 Zie[n] Ci)
C-1 vars(Ay) = --- = vars(A,) and A; # A; for i # j.

C-2 ACA;, forall i € [n].

C-3 There exists a resolution proof of the CNF formula
AUFU{A; | i€(n]}.
This proof is called the absence of models statement.
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MICE
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Inference rules of MICE

o Join:
(F1,A1,a) (F2,A2 @)

(Fl UFy,AiUAs, c1 - C2)

J-1 A; and A are consistent.
J-2 vars(F1)nvars(F) C vars(A;j) for i € {1,2}.
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MICE
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Inference rules of MICE

o Join:
(F1,A1,a) (F2,A2 @)

(Fl UFy,AiUAs, c1 - C2)

J-1 A; and A are consistent.
J-2 vars(F1)nvars(F) C vars(A;j) for i € {1,2}.
o Extension:
(F1, A1, c1)
(F, A c - 2\vars(F)\(vars(Fl)Uvars(A))|)

E-1 L CF,
E-2 Alvars(F) = A1,
E-3 A satisfies F \ Fi.

@ Since all the rules are sound, MICE proof system is sound.
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MICE
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Complexity measures of MICE

e Size of 7: Let m be a MICE proof of F. Then s(7) denotes the size
of 7 which is the total number of claims plus the number of clauses in
the resolution proofs in the absence of models statements.

@ c¢(m): Another complexity measure is the number of claims in the
MICE proof 7. This is denoted by c(7).
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MICE Proof system is Complete

Satisfying Assumption Rule (SA): If A satisfies F, we are allowed to
derive the following:

(F7A72\vars(F)\vars(A)| )

Theorem ( Fitch et al. SAT-2022, Beyersdorff et al. SAT-2023)
MICE is complete

Let F be a CNF formula, and Mod(F) denotes the set of all satisfying
assignments of F.

For every assignment o € Mod(F), derive I, = (F, «, 1) via SA.

For all these models, there must be an absence of model statement.
Derive (F, 0, |Mod(F)|) using the composition rule. O

Corollary (Beyersdorff et al.SAT-2023)

Every CNF formula F has a MICE proof w with c(m) = |Mod(F)| + 2.
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MICE
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Lower Bounds for MICE

Theorem (Beyersdorff, Hoffmann, Spachmann SAT-2023 )

MICE is p-equivalent to Res for unsatisfiable formulas.

e Pigeonhole formulas PHP,, are hard for Res [Haken 1985].

Corollary (Beyersdorff, Hoffmann, Spachmann SAT-2023 )

Any MICE proof t of PHP,, has size s(m) = 2.

@ These lower bounds are not so interesting. As these lower bounds are
implied from Res lower bounds.

@ PHP, has a MICE proof 7 of just one step, i.e., ¢(7) = 1.

@ Interesting problem: Show lower bounds on the number of claims in
the MICE proof.
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MICE
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MICE Lower Bounds on the number of Inference Steps

@ Recall that any CNF formula F has a MICE proof 7 such that
c(m) < [Mod(F)| +2

@ In order to prove the number of claims lower bounds, we must pick
CNFs with exponentially many satisfiable assignments.

Definition (XOR PAIRS,,)
The formula XOR-PAIRS,, consists of the following clauses:

C,le(x;\/><jv7;j), C,f—(x,\/xj\/zu)

C,f:(x,-\/Yj\/z;j), C,j (X VXV Zj)

for i,j € [n].

@ XOR-PAIRS,, satisfies exactly if zj = x; @ x;. XOR-PAIRS,, has 2"
models.
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MICE
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MICE Lower Bounds on the number of Inference Steps

Any MICE proof © of XOR-PAIRS,, requires claims c(m) = 2",

Proof ldea:

@ The final claim of a MICE proof must have a large count (i.e., 2").

e MICE proof always begin with a small count (i.e., 1).

@ In order to reach a large count from a small count with minimum
number of steps, a MICE proof must use the Extension or Join steps.
Since in these steps, the count gets mutiplied.

@ For XOR-PAIRS,,, one factor of any such multiplication is always a 1.

@ Thus, the only way to increase the count is through the composition
rule.

@ To reach the count 2" from 1, exponential number of summands (i.e.,
composition rules) are required.
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Knowledge Compilation
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Knowledge Compilation

o Next two #SAT proof systems KCPS(#SAT) and CPOG use
concepts from knowledge compilation.

@ Knowledge compilation has emerged as a new direction of research for
dealing with the computational intractable problems like propositional
model counting.

@ This technique compiles off-line a propositional theory (like CNF
formulas) into a target language (like some well studied structures say
DNNF).

@ The target language (like DNNF) is then used on-line to answer a
large number of queries in polynomial time.

@ Let us discuss some important target languages used.
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Knowledge Compilation
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Knowledge Compilation: Circuits

@ A circuit is a directed acyclic graph with labelled nodes that are called
gates. There is a unique gate with in-degree 0, called the root.

o Gate with out-degree 0 are called leaves and are labelled with literals
or constant 0 or 1.

o Every inner gate is an AND-, OR-, or NOT-gate and is labelled with
the corresponding Boolean function.

@ Let D be a circuit. For gates of D, we use uppercase letters such as
N.

@ vars(D) denotes the set of all variables that occur in the leaves of D.

e &(D) denotes a proper encoding of D, where we use a new variable
Vi for every gate N.

@ D(N) denotes the subcircuit of D with root and N consisting of all
descendants of N in D.
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Knowledge Compilation
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Knowledge Compilation: NNF, DNNF, d-DNNF

@ A circuit is in negation normal form (NNF) if it does not contain
NOT-gates.

@ An AND-gate with children Ny and N, is called decomposable, if
vars(D(N1)) Nvars(D(Nz)) = 0.

@ An OR-gate with children Ny and N5 is called deterministic if there
is no assignment that satisfies both D(N;) and D(N5).

@ A DNNF (decomposable negation normal form, by Adnan Darwiche,
IJCAI-1999), is an NNF where every AND-gate is decomposable.

o A d-DNNF (deterministic decomposable NNF, by Adnan Darwiche,
JANCL-2001) is a DNNF where every OR-gate is deterministic.
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Knowledge Compilation
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Knowledge Compilation: decision-DNNF

It is non-trivial to check if all OR-gates are deterministic.
Decision-DNNF is a restricted version of d-DNNF.

In a decision-DNNF, any OR-gate has the form N = (N; or Ny) with
Ny = (x and N3) and N, = (X and Njy) for any variable x.

Any such OR-gates are deterministic.

Thus decision-DNNF uses decision gates instead of OR-gates.

@ We can assume that the leaves of a Decision-DNNF contain only
constants 0 or 1
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Knowledge Compilation
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decision-DNNF

decision-DNINF D over variable set X:

@ leaves are either 0 or 1
@ decision nodes labeled with x 0 1

e outgoing edges labeled with 0,1

e x is not repeated in any
root-to-leaf path

o We say that x is tested in D

@ decomposable A nodes

@ vars(D) = set of variables tested in decision-DNNF for x = y = z
D
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decision-DNNF

decision-DNNF D over variable set X:

o Let a € {0,1}%. A source-sink path
P in D is compatible with « if and

only if when x is tested on P, the
outgoing edge labeled with a(x) is in @/®\®
P.

o We say that « satisfies D, if only
1-gates are reached by paths
compatible with a.

@ Example: Consider an assignment
a:x=0,y=0,z=1. « does not
satisfy D. Since, it is reaching a
0-gate.

decision-DNNF D for x =y =z
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KCPS
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Propositional Model Count is easy for decision-DNNF

Theorem (Adnan Darwiche 2001)

Given a decision-DNNF D for a CNF 0 {
formula F such that D = F, it is easy to ! !
compute the |Mod(F)|.

@ count models in bottom-up fashion

@ assign 0 — 0-sinks, 1 — 1-sinks.

@ at an A-gate: mutiply the model decision-DNNF D for x = y = z

count of both children
@ at a decision-gate: let two child nodes be Ny, N>.

Then, model-count =
(2‘"ars(Nl)\"ars(’v?)| x count of Np) + (2|"ars(N2)\"a’5(N1)|>< count of Njp)
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Knowledge Compilation based Proof System for #SAT

(KCPS(#SAT))

A KCPS(#SAT) proof of a CNF F provides a decision-DNNF D such that
D=F.

F:=xVYy)AXVYy)AN(xVZ)A(XV2)

Say, C = (x V Z). Does decision-DNNF D — C?

Easy, check if D A C is UNSAT.

decision-DNNF D for x =y =z decision-DNNF Dl
(conditioning D with {x =0,z = 1})
D = FV
Anil Shukla
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KCPS(#SAT) contd.
F = (xVY)A(XVy)A(xVZ)A(XVz)

Given a decision-DNNF D and a
CNF F, it is coNP-complete to
check whether F = D [Capelli,
SAT 2019] (xVy) (xvz) (xV2) (xVy)
certified decision-DNNF D for F

Certified decision-DNNF D over X:
@ every 0-sink M has a label of a clause Cyy € F s.t.

o for every a € {0,1}X, s.t there is a path from source to a 0-sink M
compatible with «, we have « falifies Cy.

Let F(D) := set of all O-sink labels i.e. F = F(D).
F(D) = D: every « falsifying D ends up at a 0-sink
hence « also falsifies the label C € F(D) at that sink.

F— DV
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KCPS(#SAT) contd.

Definition (KCPS(#SAT), Capelli, SAT-2019)

Given a CNF F, a certificate that F has exactly k satisfying assignment is
a correct certified decision-DNNF D such that:

— every clause of F(D) are clauses of F,

— D computes F and has k satisfying assignments.

For a proof system, the proof must be polynomial time verifiable. The
verification process is simple:

— Check that D is correct. That is, check if all labeled clauses

at the 0-sinks are correct. This is easy shown by Capelli,
SAT-2019.

— Check that D = F. Easy
— Check if k satisfying assignment of D. Easy!
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KCPS
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Lower bounds for KCPS(#SAT)

@ Many lower bounds on the size of decision-DNNFs representing CNFs
already known [Paul Beame et al.UAI, 2013, Simone Bova et al.,
IJCAI,2016]

e For all such CNF formulas, we have KCPS(#SAT) lower bounds.

Theorem (Olaf Beyersdorff et al., SAT-2024)

For unsatisfiable formulas, KCPS(#SAT) and regular resolution are
p-equivalent.

@ All unsatisfiable CNFs which are hard for regular resolution are also
hard for KCPS(#SAT)
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CPOG: Certified Partitioned Operation Graph

@ Another proof system CPOG for #SAT is designed by Randal E.
Bryant et al., SAT-2023.

@ CPOG is not restricted to the weak certified decision-DNNF, but uses
more flexible circuit class POG (Partitioned Operation Graph).

@ Model counting is efficient for POG.

Definition (Partitioned Operation Graph)
A POG is a d-DNNF with NOT-gates.

o Every AND-gate is decomposable, OR-gate is deterministic, and
NOT-gates are allowed in POG.

@ Alternatively, a d-DNNF can be viewed as a POG with negation
applied only to variables.
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CPOG
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Example: Partitioned Operation Graph

F=0(Vx)AG3Vx)A(x3VXs)

An assignment « satisfies the POG if
evaluating it on « evaluates to True.
For instance, {x1 = 1,x0 = 0,x3 =
1,x4 = 1} is a model for P.

Model counting is easy in POG:

@ count in bottom-up fashion

@ assign 0 — O-sinks, 1 — 1-sinks, POG P for F
% — literals

at an A-gate: multiply the model count of all children
at a —-gate: model count = 1— count at the child node
at an V-gate: add the model count of both children

at root: Final model count = multiply count with 2/vars(F)I.
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CPOG
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CPOG: Certified Partitioned Operation Graph

@ Since a proof system must be polynomial time verifiable, any proof
system which uses POG to certify #SAT of a CNF formula F must
include the following information as well:

— Encoding £(P) of the POG P,

— A proof of the fact that F — P,

— A proof of the fact that P —= F,

— A proof that all the OR-gates used in P are indeed
deterministic.

@ A POG for a CNF formula F including all the above information is a
CPOG proof.
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CPOG
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The CPOG representation and the Proof System

A CPOG proof must contains the following:
— POG representation and clausal encoding of POG E(P).

— For all OR-gates explicit proof with hints of the fact that
they are deterministic.

— For F = P: The proof contains explicit clause addition
steps. A clause can only be added if it is logically implied by
the existing clauses. A sequence of clause identifiers must be
listed as a hint providing a RUP verification of the
implication.

— For P = F: The proof contains explicit clause deletion
steps. A clause can only be deleted if it is logically implied
by the remaining clauses. A sequence of clause identifiers
must be listed as a hint providing a RUP verification of the
implication.
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CPOG example (Bryant et al., SAT 2023 slides)

F:=(x1Vx)A GV x)

ID Literals Explanation
1 1-2 Input
2 -12 Input

Anil Shukla Propositional Model Counting
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CPOG example (Bryant et al., SAT 2023 slides)

F:=(aVx)AGTVx)

ID Literals Explanation

1 1-2 Input CPOG Proof:
5 _19 Input ID Literals Explanation
3 312 P3
4 -3-1
5 -3-2
POG Declaration:
Type Literals Hint
p 3-1-2 -
Anil Shukla Propositional Model Counting 23/01/25
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CPOG
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CPOG example (Bryant et al., SAT 2023 slides)
F:=(aVx)AGTVx)

ID Literals Explanation

1 1-2 Input CPOG Proof: .
2 -12 Input ID  Literals  Explanation
3 312 P3
4 -3 -1
5 -3 -2
6 4-1-2 py
7 -41
8 -4 2

POG Declaration:
Type Literals Hint
p 3-1-2 -
p 412 -

Anil Shukla Propositional Model Counting 23/01/25 33/48



CPOG
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CPOG example (Bryant et al., SAT 2023 slides)

F:=(aVx)AGTVx)

: : CPOG Proof:
IlD Il_ltezrals :Explinatlon ID Literals Explanation
- npu
3 312
2 -12  Input P3
4 -3 -1
5 -3 -2
6 4 -1 -2 pu
7 -41
8 -4 2
9 -534 S5, 47
. 10 5-3 (Input clauses not allowed
POG Decl.aratlon. - 11 5 -4 in RUP proof of V-gates)
Type Literals Hint
p 3-1-2 -
p 412 - — RUP proof of p3 V ps

s 534 47— (P3VPs) = ps,ps have disjoint models
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation
Fi=0aVx)A(GaVx) 3 312  p;
ID Literals Explanation 4 -3-1
1 1-2 Input 5 -3-2
2 -12 Input 6 4-1-2 ps
7 -41
RUP Additions: 8 42
Type Literals Hint 9 534 s, 47
a -25 11 16 10 5 -3
+ o 11 5-4

2,5 -4 12 12 25 1116
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation
F:=0aVvx)A(GaVx) 3 312 P3
ID Literals Explanation 4 3-1
1 1-2  Input 5 -3-2
2 -12 Input 6 4-1-2 p
7 41
RUP Additions: 8 —42
Type Literals Hint 9 534 s, 47
a -25 1116 10 5 -3
a 5 10 12 2 3 11 5 -4
S 12 25 1116
5 3 -2-13 13 5 101223
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation
3 312 P3
4 -3-1
F:=(x1Vx)A KLV x) 5 -39
ID Literals Explanation 6 4-1-2 pg
1 1-2 Input 7 41
2 -12 Input 8 -42
9 -534 S5, 47
RUP deletions: 10 5-3
Type Clause Hint 11 5-4
d 12 1116 12 25 1116
13 5 101223
d 12 1116
Anil Shukla Propositional Model Counting 23/01/25
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation

3 312 P3

F:=(a1Vx)AGTVx)

4 -3-1
ID Literals Explanation 5 -3-2
1 1-2 Input 6 4-1-2 py
2 -12 Input [
8 -42
RUP deletions: 9 534 s5, 47
Type Clause Hint 10 5 -3
d 12 11 1 6 11 5 -4
d 1 135709 12 25 1116
¥ L 13 5 101223
-1,2 5-3-44 d 12 1116
d 1 13579
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation
Fi=(aV%)A GV x) 3312 ps
4 -3-1
ID Literals Explanation 5 3.2
1 1-2 Input 6 4-1-2 pa
2 -12 Input 7 41
RUP deletions: 8 42
Type Clause Hint 9 534 s, 47
d 12 1116 1053
d 1 135709 11 5-4
d 9 13 4 8 9 12 -25 1116
! (] 13 5 101223
1.-92 5 -3 -4 4 d 12 1116
d 1 13579
d 2 13489
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CPOG example (Bryant et al., SAT 2023 slides)

CPOG Proof:
ID Literals Explanation

3 312 P3

4 -3-1

5 -3-2
F:=0aVx)AGTVx) 6 4-1-2 py

7 41

38 -4 2

9 -534 55,4-7

10 5-3

11 5 -4

12 -25 1116

13 5 101223

d 12 1116

d 1 13579

d 2 13489
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Relationship among #SAT proof systems

—>  p-simulates
—4y  strictly stronger
--- incomparable

KCPS(#5SAT)
PEB,, formulas: hard PEB, formulas: easy
GT): easy GT}: hard

@ There exists a family of unsatisfiable formulas GT}, based on the
ordering principle which are easy for general Res but are hard for
regular Res. [Alekhnovich et al., TOC-2007].

e PEB, formulas on pyramidal graphs are CNF formulas which are

shown to be hard for MICE but easy for KCPS(#SAT) [Beyersdorff et
al., SAT-2024].
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KCPS and MICE are incomparable

Theorem (Beyersdorff et al.,.SAT2024)
KCPS(#SAT) cannot p-simulate MICE.

@ MICE is p-equivalent to Res.
o KCPS(#SAT) is p-equivalent to regular resolution.

@ There exists family of CNF formulas which are easy for Res but are
hard for regular Res [ Alekhnovich et al., TOC-2007].

@ Such formulas are easy for MICE but hard for KCPS(#SAT).
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KCPS and MICE are incomparable

Theorem (Beyersdorff et al., SAT-2024)
MICE cannot p-simulate KCPS(#SAT).

Proof Idea: There exists a family of CNF formulas PEB,, such that it has

small certified decision-DNNF D with D =PEB,, but any MICE proof of
PEB,, has size 2(").

@ The CNF formula PEB,, encodes a pebbling game on pyramidal
graphs.

o Let us next present the formula PEB, and an easy KCPS(#SAT)
proof for the same.
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Pyramidal Graph G,

PEB,, formulas encode a pebbling game on pyramidal graphs G,.
The pyramidal graph G, has n rows, numbered from 1 to n.

The row i has i nodes. So, G, has total m= 37 ;i=n(n+1)/2
nodes.

We label each node with P; ;, where i corresponds to the row, and j
to the column. Clearly, for each node P;;, we have 1 < j </ < n.
For each i < n, there are edges from P; 1 and Pjy1 1 to P;j.

P11

row-lo—>/4.‘<osinkfnode

<
4
4

A KA

P6.3 Pe.4
Left-parent Right-parent
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PEB, Formulas

Before presenting the PEB,, formulas, we briefly discuss the intuition.
For each node P;;, there are two variables w; ; and b; ;.

w; j denotes that a white pebble is placed on node P; ;.

b; ; denotes that a black pebble is placed on node P; ;.

PEB,, requires that each source node must contain a pebble (either
white or black).

No node can simultaneously contain a black and a white pebble.
Every other node needs to contain a pebble if and only if both its
parent nodes contain a pebble.

P11

O « source-nodes
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PEB, Formulas

Relations
000008000000

Definition (PEB,, Beyersdorff et al.,SAT-2024)

Let n be an integer. The formula PEB,, has variables w; ; and b; ; for every
i,j € [n] with j <i. The PEB, is a CNF defined as follows:
— For every i,j € [n — 1],j < i the formula requires that

(wij V bij) < ((Wit1j V bit1j) A (Wig1j41V bi+1,j+1)) Expressed as:

1

Cij = Wir1j vV Wiy1j+1 VWiV bjj
3

(iJ_—bi—‘rl,j\/WI'-i-l,j-‘rl\/WiJ\/biJ
5

G = wig1;V biy1 VW

7 -
Cij = Wit1j+1 V bit1j+1 V Wi

— For every i,j € [n],j < i, there is a clause C; = b;; V W;.
— For every j € [n], there is a clause C,:}S- = Wy V bpj.

5 .
Ci,j = Wjt1; V b,'+1’j+1 VoV b,"j

C,-‘fj = bit1;V biy1j+1V wi;V bjj
Ci6' = Wjyt1, vV b,‘.|.1J \/KJ

5 _
C;’j = Wjt1,j+1 \ bi+1j+1 Vv b”-/
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PEB,:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]
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PEB,:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

N,‘JZ (assuming no pebble at P; j,

evaluating bottom-up)

N,,J — 0 (C,}(j)
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PEB,:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

N,‘JZ (assuming no pebble at P; j,

evaluating bottom-up)

Wit1,j
bi+1J‘ Wit1,j+1
0 1 f/ 1
Wl+1 J+1 /+1J+1
l+1J / 0
C/'l.j)
1+1J+1 I+1 J+1
3) 2)
(C (C,-.j

NI+1J+

( Cﬁ;)

N,,J — 0 (C,}(j)
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PEB,:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

certified decision-DNNF for PEB,:

N,‘JZ (assuming no pebble at P; j,

evaluating bottom-up)

Wit1,j
bi+1J‘ Wit1,j+1
0 1 f/ 1
Wl+1 J+1 /+1J+1
l+1J / 0
C/'l.j)
1+1J+1 I+1 J+1
(C3 (C,-i-
NI+1J+
(C,-‘L')
N,,J — 0 ()9
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CPOG p-simulates KCPS(#SAT) and MICE

—>  p-simulates
—“»  strictly stronger
--- incomparable

CPOG
CPOG decision-DNNF

KCPS+(#SAT)

,,,,,,,,,,,,, KCPS(#SAT)
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KCPS*+(#SAT)

@ Recall the following definition:

Definition (S-certified Decision DNNF)

Let S be a set of clauses. A decision-DNNF D is called S-certified if every
0-gate N is labelled by a certificate C € S. A clause is a certificate for N
if all assignments that reach N falsify C.

Definition (KCPS™(#SAT), Florent Capelli, SAT-2019)

A KCPST(#SAT) proof of a CNF F is a pair (o, D) where,
— o is a Res derivation starting from the clauses in F and

— D is a o-certified decision DNNF (i.e., all clauses labelling
the O-gates in D are derived in o) such that D = F.
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KCPS*+(#SAT)

Theorem (Beyersdorff et al., SAT-2024)
KCPST (#SAT) p-simulate KCPS(#SAT).

Every KCPS(#SAT) proof D of a CNF formula F can be written as a
KCPST(#SAT) proof (o, D), where o contains all clauses from F. O

Theorem (Beyersdorff et al., SAT-2024)
KCPST (#SAT) p-simulates MICE.

The extraction of the decision-DNNF from a MICE proof was already
known. This proof shows how to extract a certified decision-DNNF.

Anil Shukla Propositional Model Counting 23/01/25 43 /48



Relations

000000000080

CPOGdecision—DNNF

The CPOGJecision-DNNF 5 66f system uses decision-DNNF instead of a
POG in the CPOG framework. To be precise,

Definition (CPOGYecision-DNNF " Beversdorff et al., SAT-2024)

A CPOGdecision-DNNF br60f of a CNF formula F is a pair (£(D), p) where

— D is a decision-DNNF and £(D) is a clausal encoding of D
such that D = F,

— pis a proof of F = &(D).

Since decision-DNNF uses decision gates instead of OR-gates, the
corresponding proof of CPOG is not needed.
Also, verifying D = F is easy.
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CPOGdecision—DNNF

Theorem (Beyersdorff et al., SAT-2024)
CPOGHecision-DNNF ,_cimulate KCPST (#SAT).

Proof idea: For a CNF formula F, we are given a KCPST(#SAT) proof
(0, D). For the CPOGIecision-DNNF b 60f of F, just keep the same
decision-DNNF D. Also, using o it is possible to derive a proof p of

F = D.

Theorem (Beyersdorff et al., SAT-2024)

CPOG p-simulate CPOGdecision-DNNF.

Proof idea: A decision-DNNF is also a POG.
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Conclusion and Open Problems

@ In this talk, we discussed about three proof systems for #SAT along
with their relationships: MICE, KCPS(#SAT), and CPOG.
Open Problems:
— Proving lower bounds for POG.

— There exists CNFs with small decision-DNNFs, but requires large
certified decision-DNNFs [Beyersdorff et al., SAT-2024]. Similarly, does
their exists CNF formulas with small POG, but large CPOG proofs.

— We discussed that XOR-PAIRS formulas are hard for the MICE system.
It is open whether XOR-PAIRS formulas are easy or hard for CPOG.
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Conclusion
(o] le}

Current #SAT proof complexity

—>  p-simulates
—“%  strictly stronger
--- incomparable

l CLIP-+eFrege? IXOR—PAIRS: easy

Lo: ILower bound = Major open problems

LT oo e et
lKnown Lower bound

,,,,,,,,,,,,, KCPS(#SAT)

!Sravanthi Chede, Leroy Chew, and Anil Shukla. Circuits, Proofs and Propositional
Model Counting. FSTTCS 2024.
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Thank you. )
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