
Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Proof Complexity of Propositional Model Counting

Anil Shukla

Indian Institute of Technology Ropar

Complexity Theory Update Meeting
IMSc Chennai

January 23, 2025

Anil Shukla Propositional Model Counting 23/01/25 1 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Credits

The credit for my work and understanding on propositional model
counting −

Sravanthi Chede IIT Ropar, Rupnagar, India.

Leroy Chew TU, Wien, Austria.

Anil Shukla Propositional Model Counting 23/01/25 2 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Talk Contents

1 Basic Notations

2 MICE Proof system

3 Knowledge Compilation Basics

4 KCPS Proof system

5 CPOG Proof system

6 Relationship among #SAT proof systems

7 Conclusion and Open Problems

Anil Shukla Propositional Model Counting 23/01/25 3 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Proof Systems

A proof system f : ∆∗ → Σ∗ for a language L ∈ Σ∗ is a
polynomial-time computable function such that the range of f is L.

For x ∈ L, if f (w) = x , then w is an f -proof of the fact that x ∈ L.
|w | is the length of the proof.

Soundness: For any x ∈ Σ∗ and w ∈ ∆∗, if f (w) = x , then x ∈ L.

Completeness: For every x ∈ L, there must exists w ∈ ∆∗ such that
f (w) = x .

Anil Shukla Propositional Model Counting 23/01/25 4 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Proof Systems

Let f and g are two proof systems for a language L. we say that f
simulates g if there is a computable function A that transforms the
proofs in g to proofs in f with at most a polynomial blow in size.

If A is polynomial time computable, then we say that f p-simulates
g .

f and g are p-equivalent if both can p-simulates each other.

If f p-simulates g but g does not p-simulate f then we say that f is
strictly stronger than g .

We say that f and g are incomparable if both cannot p-simulates
each other.

Proof systems for the language UNSAT are called propositional poof
systems. For example, the Resolution proof system.

Anil Shukla Propositional Model Counting 23/01/25 5 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Resolution (Res) Proof System [Blake 1937, Davis and
Putnam 1960, Robinson 1965]

Resolution rule: (C∨x) (D∨¬x)
(C∨D) , here C and D are any clauses.

Let F be an unsatisfiable CNF formula. A Resolution proof π of F is
a sequence of clauses

D1,D2, . . . ,Dk

such that the last clause Dk is the empty clause and each Di obeys
one of the following

Di ∈ F
Di is derived from some clauses Dk ,Dj , with j , k < i via the resolution
rule.

Anil Shukla Propositional Model Counting 23/01/25 6 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Reverse Unit Propogation [Goldberg and Novikov 2003]

Unit propagation (UP): Unit propagation satisfies the unit clauses
of the CNF formula F by assigning their literal to true. Until you get
a fix point or a conflict (x and ¬x both become true for some variable
x).

Given an assignment α, F |α denotes the CNF formula F ′ without the
clauses of F satisfied by α and without the literals in the clauses of F
falsified by α.

Let F be a CNF formula and C a clause. Let α be the smallest
assignment that falsifies C . We say that C is implied by F through
UP (denoted F 1 C) if UP on F |α results in a conflict.

F 1 C is known as Reverse Unit Propagation.

Anil Shukla Propositional Model Counting 23/01/25 7 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Propositional Model Counting

For a given CNF formula F , the propositional model counting #SAT
problem asks to compute the number of satisfying assignments.

#SAT is one of the hardest known problems in the field of
computational complexity.

In fact, Toda [1991] shows that with a single call to a #SAT oracle,
any problem in the polynomial hierarchy can be solved in polynomial
time.

In this talk, we focus on different proof systems for the propositional
model counting problem.

To be precise, we focus on different proof systems for the language
L = {(F , k) | F has exactly k satisfying assignments}

Anil Shukla Propositional Model Counting 23/01/25 8 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

A Naive Proof Systems for #SAT

A naive proof system to prove that a CNF formula F has exactly k
satisfying assignment is to list the k satisfying assignments along with
a resolution proof of the CNF formula F ′, where F ′ consist of the
following clauses:

All clauses of F belongs to F ′.
For each satisfying assignment α of F , there is a clause Cα ∈ F ′, where
Cα is the clause that has the unique falsifying assignment α.

Example: (x ∨ y) ∧ (x ∨ y), satisfying assignments are {x = 0, y = 0}
and {x = 1, y = 1}.
F ′ := (x ∨ y) ∧ (x ∨ y) ∧(x ∨ y) ∧ (x ∨ y)
Res-proof of F ′:

(x ∨ y) (x ∨ y)

(x)

(x ∨ y) (x ∨ y)

(x)

⊥

Anil Shukla Propositional Model Counting 23/01/25 9 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

A Naive Proof Systems for #SAT

A naive proof system to prove that a CNF formula F has exactly k
satisfying assignment is to list the k satisfying assignments along with
a resolution proof of the CNF formula F ′, where F ′ consist of the
following clauses:

All clauses of F belongs to F ′.
For each satisfying assignment α of F , there is a clause Cα ∈ F ′, where
Cα is the clause that has the unique falsifying assignment α.

Example: (x ∨ y) ∧ (x ∨ y), satisfying assignments are {x = 0, y = 0}
and {x = 1, y = 1}.
F ′ := (x ∨ y) ∧ (x ∨ y) ∧(x ∨ y) ∧ (x ∨ y)
Res-proof of F ′:

(x ∨ y) (x ∨ y)

(x)

(x ∨ y) (x ∨ y)

(x)

⊥

Anil Shukla Propositional Model Counting 23/01/25 9 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

MICE Proof System

Inspired from many #SAT solvers, Fitch et al. SAT-2022, designed a
proof system MICE (Model Counting Induction by Claim
Extension) for #SAT. A simplified and equivalent proof system
MICE’ is designed by Beyersdorff et al.SAT-2023. These systems work
with claims.

Claims: A claim is a 3-tuple (F ,A, c), where F is a CNF formula, A
is a partial assignment over the vars(F), and c is a count.

We say that a claim is correct if c is equal to the number of satisfying
assignments of F |A.

Definition (MICE, Fitch et al.SAT-2022, Beyersdorff et al.SAT-2023)

A MICE proof of a CNF formula F is a sequence of claims I1, I2, . . . , Ik that
are derived from inference rules Axiom, Composition, Join, and Extension,
such that the final claim Ik is a correct claim of the form (F , ∅, c).

Anil Shukla Propositional Model Counting 23/01/25 10 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Inference rules of MICE

Axioms:

(∅, ∅, 1)

Composition:
(F ,A1, c1) · · · (F ,An, cn)

(F ,A,
∑

i∈[n] ci)

C-1 vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j .
C-2 A ⊆ Ai , for all i ∈ [n].
C-3 There exists a resolution proof of the CNF formula

A ∪ F ∪ {Ai | i ∈ [n]}.
This proof is called the absence of models statement.

Anil Shukla Propositional Model Counting 23/01/25 11 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Inference rules of MICE

Axioms:

(∅, ∅, 1)

Composition:
(F ,A1, c1) · · · (F ,An, cn)

(F ,A,
∑

i∈[n] ci)

C-1 vars(A1) = · · · = vars(An) and Ai ̸= Aj for i ̸= j .
C-2 A ⊆ Ai , for all i ∈ [n].
C-3 There exists a resolution proof of the CNF formula

A ∪ F ∪ {Ai | i ∈ [n]}.
This proof is called the absence of models statement.

Anil Shukla Propositional Model Counting 23/01/25 11 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Inference rules of MICE

Join:
(F1,A1, c1) (F2,A2, c2)

(F1 ∪ F2,A1 ∪ A2, c1 · c2)

J-1 A1 and A2 are consistent.
J-2 vars(F1)∩vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension:
(F1,A1, c1)

(F ,A, c1 · 2|vars(F)\(vars(F1)∪vars(A))|)

E-1 F1 ⊆ F ,
E-2 A|vars(F1) = A1,
E-3 A satisfies F \ F1.

Since all the rules are sound, MICE proof system is sound.

Anil Shukla Propositional Model Counting 23/01/25 12 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Inference rules of MICE

Join:
(F1,A1, c1) (F2,A2, c2)

(F1 ∪ F2,A1 ∪ A2, c1 · c2)

J-1 A1 and A2 are consistent.
J-2 vars(F1)∩vars(F2) ⊆ vars(Ai) for i ∈ {1, 2}.

Extension:
(F1,A1, c1)

(F ,A, c1 · 2|vars(F)\(vars(F1)∪vars(A))|)

E-1 F1 ⊆ F ,
E-2 A|vars(F1) = A1,
E-3 A satisfies F \ F1.

Since all the rules are sound, MICE proof system is sound.

Anil Shukla Propositional Model Counting 23/01/25 12 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Complexity measures of MICE

Size of π: Let π be a MICE proof of F . Then s(π) denotes the size
of π which is the total number of claims plus the number of clauses in
the resolution proofs in the absence of models statements.

c(π): Another complexity measure is the number of claims in the
MICE proof π. This is denoted by c(π).

Anil Shukla Propositional Model Counting 23/01/25 13 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

MICE Proof system is Complete

Satisfying Assumption Rule (SA): If A satisfies F , we are allowed to
derive the following:

(F ,A,2|vars(F)\vars(A)|)

Theorem (Fitch et al.SAT-2022, Beyersdorff et al.SAT-2023)

MICE is complete

Proof.

Let F be a CNF formula, and Mod(F) denotes the set of all satisfying
assignments of F .
For every assignment α ∈ Mod(F), derive Iα = (F , α, 1) via SA.
For all these models, there must be an absence of model statement.
Derive (F , ∅, |Mod(F)|) using the composition rule.

Corollary (Beyersdorff et al.SAT-2023)

Every CNF formula F has a MICE proof π with c(π) = |Mod(F)|+ 2.

Anil Shukla Propositional Model Counting 23/01/25 14 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Lower Bounds for MICE

Theorem (Beyersdorff, Hoffmann, Spachmann SAT-2023)

MICE is p-equivalent to Res for unsatisfiable formulas.

Pigeonhole formulas PHPn are hard for Res [Haken 1985].

Corollary (Beyersdorff, Hoffmann, Spachmann SAT-2023)

Any MICE proof π of PHPn has size s(π) = 2Ω(n).

These lower bounds are not so interesting. As these lower bounds are
implied from Res lower bounds.

PHPn has a MICE proof π of just one step, i.e., c(π) = 1.

Interesting problem: Show lower bounds on the number of claims in
the MICE proof.

Anil Shukla Propositional Model Counting 23/01/25 15 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

MICE Lower Bounds on the number of Inference Steps

Recall that any CNF formula F has a MICE proof π such that
c(π) ≤ |Mod(F)|+ 2

In order to prove the number of claims lower bounds, we must pick
CNFs with exponentially many satisfiable assignments.

Definition (XOR PAIRSn)

The formula XOR-PAIRSn consists of the following clauses:

C 1
ij = (xi ∨ xj ∨ zij), C 2

ij = (xi ∨ xj ∨ zij)

C 3
ij = (xi ∨ xj ∨ zij), C 4

ij = (xi ∨ xj ∨ zij)

for i , j ∈ [n].

XOR-PAIRSn satisfies exactly if zij = xi ⊕ xj . XOR-PAIRSn has 2n

models.

Anil Shukla Propositional Model Counting 23/01/25 16 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

MICE Lower Bounds on the number of Inference Steps

Theorem

Any MICE proof π of XOR-PAIRSn requires claims c(π) = 2Ω(n).

Proof Idea:

The final claim of a MICE proof must have a large count (i.e., 2n).

MICE proof always begin with a small count (i.e., 1).

In order to reach a large count from a small count with minimum
number of steps, a MICE proof must use the Extension or Join steps.
Since in these steps, the count gets mutiplied.

For XOR-PAIRSn, one factor of any such multiplication is always a 1.

Thus, the only way to increase the count is through the composition
rule.

To reach the count 2n from 1, exponential number of summands (i.e.,
composition rules) are required.

Anil Shukla Propositional Model Counting 23/01/25 17 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Knowledge Compilation

Next two #SAT proof systems KCPS(#SAT) and CPOG use
concepts from knowledge compilation.

Knowledge compilation has emerged as a new direction of research for
dealing with the computational intractable problems like propositional
model counting.

This technique compiles off-line a propositional theory (like CNF
formulas) into a target language (like some well studied structures say
DNNF).

The target language (like DNNF) is then used on-line to answer a
large number of queries in polynomial time.

Let us discuss some important target languages used.

Anil Shukla Propositional Model Counting 23/01/25 18 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Knowledge Compilation: Circuits

A circuit is a directed acyclic graph with labelled nodes that are called
gates. There is a unique gate with in-degree 0, called the root.

Gate with out-degree 0 are called leaves and are labelled with literals
or constant 0 or 1.

Every inner gate is an AND-, OR-, or NOT-gate and is labelled with
the corresponding Boolean function.

Let D be a circuit. For gates of D, we use uppercase letters such as
N.

vars(D) denotes the set of all variables that occur in the leaves of D.

E(D) denotes a proper encoding of D, where we use a new variable
VN for every gate N.

D(N) denotes the subcircuit of D with root and N consisting of all
descendants of N in D.

Anil Shukla Propositional Model Counting 23/01/25 19 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Knowledge Compilation: NNF, DNNF, d-DNNF

A circuit is in negation normal form (NNF) if it does not contain
NOT-gates.

An AND-gate with children N1 and N2 is called decomposable, if
vars(D(N1)) ∩ vars(D(N2)) = ∅.
An OR-gate with children N1 and N2 is called deterministic if there
is no assignment that satisfies both D(N1) and D(N2).

A DNNF (decomposable negation normal form, by Adnan Darwiche,
IJCAI-1999), is an NNF where every AND-gate is decomposable.

A d-DNNF (deterministic decomposable NNF, by Adnan Darwiche,
JANCL-2001) is a DNNF where every OR-gate is deterministic.

Anil Shukla Propositional Model Counting 23/01/25 20 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Knowledge Compilation: decision-DNNF

It is non-trivial to check if all OR-gates are deterministic.

Decision-DNNF is a restricted version of d-DNNF.

In a decision-DNNF, any OR-gate has the form N = (N1 or N2) with
N1 = (x and N3) and N2 = (x and N4) for any variable x .

Any such OR-gates are deterministic.

Thus decision-DNNF uses decision gates instead of OR-gates.

We can assume that the leaves of a Decision-DNNF contain only
constants 0 or 1

Anil Shukla Propositional Model Counting 23/01/25 21 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

decision-DNNF

decision-DNNF D over variable set X :

leaves are either 0 or 1

decision nodes labeled with x

outgoing edges labeled with 0,1
x is not repeated in any
root-to-leaf path
We say that x is tested in D

decomposable ∧ nodes

vars(D) = set of variables tested in
D

x

∧ ∧

y z z y

0 1 0 1 0

0 1

1 0 0 1 0 1 1 0

decision-DNNF for x = y = z

Anil Shukla Propositional Model Counting 23/01/25 22 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

decision-DNNF

decision-DNNF D over variable set X :

Let α ∈ {0, 1}X . A source-sink path
P in D is compatible with α if and
only if when x is tested on P, the
outgoing edge labeled with α(x) is in
P.

We say that α satisfies D, if only
1-gates are reached by paths
compatible with α.

Example: Consider an assignment
α : x = 0, y = 0, z = 1. α does not
satisfy D. Since, it is reaching a
0-gate.

x

∧ ∧

y z z y

0 1 0 1 0

0 1

1 0 0 1 0 1 1 0

decision-DNNF D for x = y = z

Anil Shukla Propositional Model Counting 23/01/25 23 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Propositional Model Count is easy for decision-DNNF

Theorem (Adnan Darwiche 2001)

Given a decision-DNNF D for a CNF
formula F such that D ≡ F , it is easy to
compute the |Mod(F)|.

count models in bottom-up fashion

assign 0→ 0-sinks, 1→ 1-sinks.

at an ∧-gate: mutiply the model
count of both children

x2

∧1 ∧1

y1 z1 z1 y1

00 11 00 11 00

0 1

1 0 0 1 0 1 1 0

decision-DNNF D for x = y = z

at a decision-gate: let two child nodes be N1,N2.
Then, model-count =
(2|vars(N1)\vars(N2)|× count of N2) + (2|vars(N2)\vars(N1)|× count of N1)

Anil Shukla Propositional Model Counting 23/01/25 24 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Knowledge Compilation based Proof System for #SAT
(KCPS(#SAT))

A KCPS(#SAT) proof of a CNF F provides a decision-DNNF D such that
D ≡ F .
F := (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z)
Say, C = (x ∨ z). Does decision-DNNF D =⇒ C?
Easy, check if D ∧ C is UNSAT.

x

∧ ∧

y z z y

0 1 0 1 0

0 1

1 0 0 1 0 1 1 0

decision-DNNF D for x = y = z

x0

∧0 00

y1 z0

00 11 00 00

0 1

1 0 0 1

decision-DNNF D|C
(conditioning D with {x = 0, z = 1})

D =⇒ F ✓
Anil Shukla Propositional Model Counting 23/01/25 25 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS(#SAT) contd.

F := (x∨y)∧(x∨y)∧(x∨z)∧(x∨z)

Given a decision-DNNF D and a
CNF F , it is coNP-complete to
check whether F =⇒ D [Capelli,
SAT 2019]

x

∧ ∧

y z z y

0
(x ∨ y)

1 0
(x ∨ z)

0
(x ∨ z)

1 0
(x ∨ y)

0 1

1 0 0 1 0 1 1 0

certified decision-DNNF D for F
Certified decision-DNNF D over X :

every 0-sink M has a label of a clause CM ∈ F s.t.
for every α ∈ {0, 1}X , s.t there is a path from source to a 0-sink M
compatible with α, we have α falifies CM .

Let F (D) := set of all 0-sink labels i.e. F =⇒ F (D).
F (D) =⇒ D: every α falsifying D ends up at a 0-sink

hence α also falsifies the label C ∈ F (D) at that sink.

F =⇒ D ✓
Anil Shukla Propositional Model Counting 23/01/25 26 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS(#SAT) contd.

Definition (KCPS(#SAT), Capelli, SAT-2019)

Given a CNF F , a certificate that F has exactly k satisfying assignment is
a correct certified decision-DNNF D such that:

− every clause of F (D) are clauses of F ,

− D computes F and has k satisfying assignments.

For a proof system, the proof must be polynomial time verifiable. The
verification process is simple:

− Check that D is correct. That is, check if all labeled clauses
at the 0-sinks are correct. This is easy shown by Capelli,
SAT-2019.

− Check that D ≡ F . Easy

− Check if k satisfying assignment of D. Easy!

Anil Shukla Propositional Model Counting 23/01/25 27 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Lower bounds for KCPS(#SAT)

Many lower bounds on the size of decision-DNNFs representing CNFs
already known [Paul Beame et al.UAI, 2013, Simone Bova et al.,
IJCAI,2016]

For all such CNF formulas, we have KCPS(#SAT) lower bounds.

Theorem (Olaf Beyersdorff et al., SAT-2024)

For unsatisfiable formulas, KCPS(#SAT) and regular resolution are
p-equivalent.

All unsatisfiable CNFs which are hard for regular resolution are also
hard for KCPS(#SAT)

Anil Shukla Propositional Model Counting 23/01/25 28 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG: Certified Partitioned Operation Graph

Another proof system CPOG for #SAT is designed by Randal E.
Bryant et al., SAT-2023.

CPOG is not restricted to the weak certified decision-DNNF, but uses
more flexible circuit class POG (Partitioned Operation Graph).

Model counting is efficient for POG.

Definition (Partitioned Operation Graph)

A POG is a d-DNNF with NOT-gates.

Every AND-gate is decomposable, OR-gate is deterministic, and
NOT-gates are allowed in POG.

Alternatively, a d-DNNF can be viewed as a POG with negation
applied only to variables.

Anil Shukla Propositional Model Counting 23/01/25 29 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Example: Partitioned Operation Graph

F := (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4)

An assignment α satisfies the POG if
evaluating it on α evaluates to True.
For instance, {x1 = 1, x2 = 0, x3 =
1, x4 = 1} is a model for P.

Model counting is easy in POG:

count in bottom-up fashion

assign 0→ 0-sinks, 1→ 1-sinks,
1
2 → literals

∧ 6
16 × 16 = 6

¬3
4 ∨ 2

4

∧1
4 ∧ 1

4 ∧ 1
4

x11
2

x21
2

x3 1
2

x4 1
2 x3

1
2 x4

1
2

POG P for F

at an ∧-gate: multiply the model count of all children

at a ¬-gate: model count = 1− count at the child node

at an ∨-gate: add the model count of both children

at root: Final model count = multiply count with 2|vars(F)|.

Anil Shukla Propositional Model Counting 23/01/25 30 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG: Certified Partitioned Operation Graph

Since a proof system must be polynomial time verifiable, any proof
system which uses POG to certify #SAT of a CNF formula F must
include the following information as well:

− Encoding E(P) of the POG P,
− A proof of the fact that F =⇒ P,
− A proof of the fact that P =⇒ F ,
− A proof that all the OR-gates used in P are indeed

deterministic.

A POG for a CNF formula F including all the above information is a
CPOG proof.

Anil Shukla Propositional Model Counting 23/01/25 31 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

The CPOG representation and the Proof System

A CPOG proof must contains the following:

− POG representation and clausal encoding of POG E(P).
− For all OR-gates explicit proof with hints of the fact that

they are deterministic.

− For F =⇒ P: The proof contains explicit clause addition
steps. A clause can only be added if it is logically implied by
the existing clauses. A sequence of clause identifiers must be
listed as a hint providing a RUP verification of the
implication.

− For P =⇒ F : The proof contains explicit clause deletion
steps. A clause can only be deleted if it is logically implied
by the remaining clauses. A sequence of clause identifiers
must be listed as a hint providing a RUP verification of the
implication.

Anil Shukla Propositional Model Counting 23/01/25 32 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

∨ s5

∧ p3 ∧ p4

x1 x2 x1 x2

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2

6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

∨ s5

∧ p3 ∧ p4

x1 x2 x1 x2

POG Declaration:
Type Literals Hint

p 3 −1 −2 -

p 4 1 2 -
s 5 3 4 4 7→ (p3 ∨ p4)

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2

6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

∨ s5

∧ p3 ∧ p4

x1 x2 x1 x2

POG Declaration:
Type Literals Hint

p 3 −1 −2 -
p 4 1 2 -

s 5 3 4 4 7→ (p3 ∨ p4)

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

∨ s5

∧ p3 ∧ p4

x1 x2 x1 x2

POG Declaration:
Type Literals Hint

p 3 −1 −2 -
p 4 1 2 -
s 5 3 4 4 7→ (p3 ∨ p4)

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3 (Input clauses not allowed

11 5 −4 in RUP proof of ∨-gates)

→ RUP proof of p3 ∨ p4
=⇒ p3, p4 have disjoint models

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

RUP Additions:
Type Literals Hint

a −2 5 11 1 6
↓ ↓ ↓ ↓

2, −5 −4 1 −2

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

RUP Additions:
Type Literals Hint

a −2 5 11 1 6
a 5 10 12 2 3

↓ ↓ ↓ ↓ ↓
−5 −3 −2 −1 3

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6
13 5 10 12 2 3

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

RUP deletions:
Type Clause Hint

d 12 11 1 6

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6
13 5 10 12 2 3

d 12 11 1 6

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

RUP deletions:
Type Clause Hint

d 12 11 1 6
d 1 13 5 7 9

↓ ↓ ↓ ↓ ↓
−1, 2 5 −3 −4 4

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6
13 5 10 12 2 3

d 12 11 1 6

d 1 13 5 7 9

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

ID Literals Explanation

1 1 −2 Input
2 −1 2 Input

RUP deletions:
Type Clause Hint

d 12 11 1 6
d 1 13 5 7 9
d 2 13 4 8 9

↓ ↓ ↓ ↓ ↓
1,−2 5 −3 −4 4

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6
13 5 10 12 2 3

d 12 11 1 6

d 1 13 5 7 9

d 2 13 4 8 9

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG example (Bryant et al., SAT 2023 slides)

F := (x1 ∨ x2) ∧ (x1 ∨ x2)

∨ s5

∧ p3 ∧ p4

x1 x2 x1 x2

CPOG Proof:
ID Literals Explanation

3 3 1 2 p3
4 −3 −1
5 −3 −2
6 4 −1 −2 p4
7 −4 1
8 −4 2

9 −5 3 4 s5, 4 7
10 5 −3
11 5 −4
12 −2 5 11 1 6
13 5 10 12 2 3

d 12 11 1 6

d 1 13 5 7 9

d 2 13 4 8 9

Anil Shukla Propositional Model Counting 23/01/25 33 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Relationship among #SAT proof systems

p-simulates

strictly stronger

incomparable

KCPS(#SAT)MICE

CPOG

PEBn formulas: hard

GT ′
n: easy

PEBn formulas: easy

GT ′
n: hard

There exists a family of unsatisfiable formulas GT ′
n based on the

ordering principle which are easy for general Res but are hard for
regular Res. [Alekhnovich et al., TOC-2007].

PEBn formulas on pyramidal graphs are CNF formulas which are
shown to be hard for MICE but easy for KCPS(#SAT) [Beyersdorff et
al., SAT-2024].

Anil Shukla Propositional Model Counting 23/01/25 34 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS and MICE are incomparable

Theorem (Beyersdorff et al.,SAT2024)

KCPS(#SAT) cannot p-simulate MICE.

Proof.

MICE is p-equivalent to Res.

KCPS(#SAT) is p-equivalent to regular resolution.

There exists family of CNF formulas which are easy for Res but are
hard for regular Res [Alekhnovich et al., TOC-2007].

Such formulas are easy for MICE but hard for KCPS(#SAT).

Anil Shukla Propositional Model Counting 23/01/25 35 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS and MICE are incomparable

Theorem (Beyersdorff et al., SAT-2024)

MICE cannot p-simulate KCPS(#SAT).

Proof Idea: There exists a family of CNF formulas PEBn such that it has
small certified decision-DNNF D with D ≡PEBn but any MICE proof of
PEBn has size 2Ω(n).

The CNF formula PEBn encodes a pebbling game on pyramidal
graphs.

Let us next present the formula PEBn and an easy KCPS(#SAT)
proof for the same.

Anil Shukla Propositional Model Counting 23/01/25 36 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Pyramidal Graph Gn

PEBn formulas encode a pebbling game on pyramidal graphs Gn.

The pyramidal graph Gn has n rows, numbered from 1 to n.

The row i has i nodes. So, Gn has total m =
∑n

i=1 i = n(n + 1)/2
nodes.

We label each node with Pi ,j , where i corresponds to the row, and j
to the column. Clearly, for each node Pi ,j , we have 1 ≤ j ≤ i ≤ n.

For each i < n, there are edges from Pi+1,j and Pi+1,j+1 to Pi ,j .

p6,3
Left-parent

p6,4
Right-parent

p5,3

p1,1
← sink-noderow-1 →

← source-nodesrow-6 →

Anil Shukla Propositional Model Counting 23/01/25 37 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn Formulas

Before presenting the PEBn formulas, we briefly discuss the intuition.
For each node Pi ,j , there are two variables wi ,j and bi ,j .
wi ,j denotes that a white pebble is placed on node Pi ,j .
bi ,j denotes that a black pebble is placed on node Pi ,j .
PEBn requires that each source node must contain a pebble (either
white or black).
No node can simultaneously contain a black and a white pebble.
Every other node needs to contain a pebble if and only if both its
parent nodes contain a pebble.

p6,3
Left-parent

p6,4
Right-parent

p5,3

p1,1
← sink-noderow-1 →

← source-nodesrow-6 →

Anil Shukla Propositional Model Counting 23/01/25 38 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn Formulas

Definition (PEBn, Beyersdorff et al.,SAT-2024)

Let n be an integer. The formula PEBn has variables wi ,j and bi ,j for every
i , j ∈ [n] with j ≤ i . The PEBn is a CNF defined as follows:
− For every i , j ∈ [n − 1], j ≤ i the formula requires that

(wi ,j ∨ bi ,j)↔
(
(wi+1,j ∨ bi+1,j) ∧ (wi+1,j+1 ∨ bi+1,j+1)

)
Expressed as:

C 1
i ,j = wi+1,j ∨ wi+1,j+1 ∨ wi ,j ∨ bi ,j C 2

i ,j = wi+1,j ∨ bi+1,j+1 ∨ wi ,j ∨ bi ,j

C 3
i ,j = bi+1,j ∨ wi+1,j+1 ∨ wi ,j ∨ bi ,j C 4

i ,j = bi+1,j ∨ bi+1,j+1 ∨ wi ,j ∨ bi ,j

C 5
i ,j = wi+1,j ∨ bi+1,j ∨ wi ,j C 6

i ,j = wi+1,j ∨ bi+1,j ∨ bi ,j

C 7
i ,j = wi+1,j+1 ∨ bi+1,j+1 ∨ wi ,j C 8

i ,j = wi+1,j+1 ∨ bi+1,j+1 ∨ bi ,j

− For every i , j ∈ [n], j ≤ i , there is a clause C 9
i ,j = bi ,j ∨ wi ,j .

− For every j ∈ [n], there is a clause C 10
n,j = wn,j ∨ bn,j .

Anil Shukla Propositional Model Counting 23/01/25 39 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

Ni ,j : (assuming no pebble at Pi,j ,

evaluating bottom-up)

wi+1,j

bi+1,j wi+1,j+1

Ni+1,j

wi+1,j+1 bi+1,j+1

0
(C 1

i ,j)

bi+1,j+1

0
(C 3

i ,j)

Ni+1,j+1

0
(C 2

i ,j)

Ni+1,j+1

0
(C 4

i ,j)

0 1

0 1 0
1

0
1 0

1

0 1

Nn,j =⇒ 0 (C10
n,j)

certified decision-DNNF for PEBn:

w1,1

b1,1 b1,1

N1,1
w2,1

0
(C 9

1,1)

b2,1 b2,1

N2,1
w2,2

0
(C 9

2,1)

bn,n bn,n

Nn,n 0
(C 9

n,n)1

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

P1,1

P2,1

Pn,n

Anil Shukla Propositional Model Counting 23/01/25 40 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

Ni ,j : (assuming no pebble at Pi,j ,

evaluating bottom-up)

wi+1,j

bi+1,j wi+1,j+1

Ni+1,j

wi+1,j+1 bi+1,j+1

0
(C 1

i ,j)

bi+1,j+1

0
(C 3

i ,j)

Ni+1,j+1

0
(C 2

i ,j)

Ni+1,j+1

0
(C 4

i ,j)

0 1

0 1 0
1

0
1 0

1

0 1

Nn,j =⇒ 0 (C10
n,j)

certified decision-DNNF for PEBn:

w1,1

b1,1 b1,1

N1,1
w2,1

0
(C 9

1,1)

b2,1 b2,1

N2,1
w2,2

0
(C 9

2,1)

bn,n bn,n

Nn,n 0
(C 9

n,n)1

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

P1,1

P2,1

Pn,n

Anil Shukla Propositional Model Counting 23/01/25 40 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

Ni ,j : (assuming no pebble at Pi,j ,

evaluating bottom-up)

wi+1,j

bi+1,j wi+1,j+1

Ni+1,j

wi+1,j+1 bi+1,j+1

0
(C 1

i ,j)

bi+1,j+1

0
(C 3

i ,j)

Ni+1,j+1

0
(C 2

i ,j)

Ni+1,j+1

0
(C 4

i ,j)

0 1

0 1 0
1

0
1 0

1

0 1

Nn,j =⇒ 0 (C10
n,j)

certified decision-DNNF for PEBn:

w1,1

b1,1 b1,1

N1,1
w2,1

0
(C 9

1,1)

b2,1 b2,1

N2,1
w2,2

0
(C 9

2,1)

bn,n bn,n

Nn,n 0
(C 9

n,n)1

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

P1,1

P2,1

Pn,n

Anil Shukla Propositional Model Counting 23/01/25 40 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

PEBn:KCPS(#SAT) proof [Beyersdorff et al.,SAT-2024]

Ni ,j : (assuming no pebble at Pi,j ,

evaluating bottom-up)

wi+1,j

bi+1,j wi+1,j+1

Ni+1,j

wi+1,j+1 bi+1,j+1

0
(C 1

i ,j)

bi+1,j+1

0
(C 3

i ,j)

Ni+1,j+1

0
(C 2

i ,j)

Ni+1,j+1

0
(C 4

i ,j)

0 1

0 1 0
1

0
1 0

1

0 1

Nn,j =⇒ 0 (C10
n,j)

certified decision-DNNF for PEBn:

w1,1

b1,1 b1,1

N1,1
w2,1

0
(C 9

1,1)

b2,1 b2,1

N2,1
w2,2

0
(C 9

2,1)

bn,n bn,n

Nn,n 0
(C 9

n,n)1

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1

P1,1

P2,1

Pn,n

Anil Shukla Propositional Model Counting 23/01/25 40 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOG p-simulates KCPS(#SAT) and MICE

KCPS(#SAT)MICE

KCPS+(#SAT)

CPOG decision-DNNF

CPOG

p-simulates

strictly stronger

incomparable

Anil Shukla Propositional Model Counting 23/01/25 41 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS+(#SAT)

Recall the following definition:

Definition (S-certified Decision DNNF)

Let S be a set of clauses. A decision-DNNF D is called S-certified if every
0-gate N is labelled by a certificate C ∈ S . A clause is a certificate for N
if all assignments that reach N falsify C .

Definition (KCPS+(#SAT), Florent Capelli, SAT-2019)

A KCPS+(#SAT) proof of a CNF F is a pair (σ,D) where,

− σ is a Res derivation starting from the clauses in F and

− D is a σ-certified decision DNNF (i.e., all clauses labelling
the 0-gates in D are derived in σ) such that D ≡ F .

Anil Shukla Propositional Model Counting 23/01/25 42 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

KCPS+(#SAT)

Theorem (Beyersdorff et al., SAT-2024)

KCPS+(#SAT) p-simulate KCPS(#SAT).

Proof.

Every KCPS(#SAT) proof D of a CNF formula F can be written as a
KCPS+(#SAT) proof (σ,D), where σ contains all clauses from F .

Theorem (Beyersdorff et al., SAT-2024)

KCPS+(#SAT) p-simulates MICE.

The extraction of the decision-DNNF from a MICE proof was already
known. This proof shows how to extract a certified decision-DNNF.

Anil Shukla Propositional Model Counting 23/01/25 43 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOGdecision-DNNF

The CPOGdecision-DNNF proof system uses decision-DNNF instead of a
POG in the CPOG framework. To be precise,

Definition (CPOGdecision-DNNF, Beyersdorff et al., SAT-2024)

A CPOGdecision-DNNF proof of a CNF formula F is a pair (E(D), ρ) where

− D is a decision-DNNF and E(D) is a clausal encoding of D
such that D ≡ F ,

− ρ is a proof of F =⇒ E(D).

Since decision-DNNF uses decision gates instead of OR-gates, the
corresponding proof of CPOG is not needed.
Also, verifying D =⇒ F is easy.

Anil Shukla Propositional Model Counting 23/01/25 44 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

CPOGdecision-DNNF

Theorem (Beyersdorff et al., SAT-2024)

CPOGdecision-DNNF p-simulate KCPS+(#SAT).

Proof idea: For a CNF formula F , we are given a KCPS+(#SAT) proof
(σ,D). For the CPOGdecision-DNNF proof of F , just keep the same
decision-DNNF D. Also, using σ it is possible to derive a proof ρ of
F =⇒ D.

Theorem (Beyersdorff et al., SAT-2024)

CPOG p-simulate CPOGdecision-DNNF.

Proof idea: A decision-DNNF is also a POG.

Anil Shukla Propositional Model Counting 23/01/25 45 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Conclusion and Open Problems

In this talk, we discussed about three proof systems for #SAT along
with their relationships: MICE, KCPS(#SAT), and CPOG.

Open Problems:
− Proving lower bounds for POG.

− There exists CNFs with small decision-DNNFs, but requires large
certified decision-DNNFs [Beyersdorff et al., SAT-2024]. Similarly, does
their exists CNF formulas with small POG, but large CPOG proofs.

− We discussed that XOR-PAIRS formulas are hard for the MICE system.
It is open whether XOR-PAIRS formulas are easy or hard for CPOG.

Anil Shukla Propositional Model Counting 23/01/25 46 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Current #SAT proof complexity

MICE KCPS(#SAT)

CPOG

CLIP+eFrege1 XOR-PAIRS: easy

Known Lower bound
L1:

Lower bound ≡ Major open problems
L2:

p-simulates

strictly stronger

incomparable

1Sravanthi Chede, Leroy Chew, and Anil Shukla. Circuits, Proofs and Propositional
Model Counting. FSTTCS 2024.

Anil Shukla Propositional Model Counting 23/01/25 47 / 48

Basic Notations MICE Knowledge Compilation KCPS CPOG Relations Conclusion

Thank you.

Anil Shukla Propositional Model Counting 23/01/25 48 / 48

	Basic Notations
	MICE Proof system
	Knowledge Compilation Basics
	KCPS Proof system
	CPOG Proof system
	Relationship among #SAT proof systems
	Conclusion and Open Problems

